

Contents

1 *The Science of Plant Ecology* 1

Ecology as a Science 1

- The Genesis of Scientific Knowledge 2
- Objectivity, Subjectivity, Choice, and Chance in Scientific Research 4
- Experiments: The Heart of Research 4

- Testing Theories 8
- Specific Results versus General Understanding 9
- Science and Other Ways of Knowing, Revisited 9
- Scale and Heterogeneity** 9
- The Structure and History of Plant Ecology** 11
- Questions for Further Study** 13
- Additional Readings** 13

PART I **THE INDIVIDUAL AND ITS ENVIRONMENT**

2 *Photosynthesis and the Light Environment* 17

The Process of Photosynthesis 18

Photosynthetic Rates 20

- Limitations Caused by Light Levels 20
- Limitations on Carbon Uptake 23
- Variation in Photosynthetic Rates Within and Between Habitats 24

The Three Photosynthetic Pathways 25

- C_3 Photosynthesis 25
- C_4 Photosynthesis 25

BOX 2A Photorespiration 26

BOX 2B Stable Isotopes and Photosynthesis 27

- Crassulacean Acid Metabolism (CAM Photosynthesis) 29

Evolution of the Three Photosynthetic Pathways 30

- Phylogeny of the Photosynthetic Pathways 30
- Photosynthesis through Evolutionary Time 31

Growth Form, Phenology, and Distribution of C_3 , C_4 , and CAM Plants 32

- Growth Forms and Habitats 32
- Phenology 34
- Geographic Distributions 34

Adaptations to the Light Environment 36

- Sun and Shade Leaves 36
- Species' Adaptations to High-Light and Low-Light Habitats 37

BOX 2C Leaf Iridescence and Structural Coloration 38

- Do Sun and Shade Adaptations Exist Within Species? 39
- Day Length: Responses and Adaptations 40

Summary 41
Questions for Further Study 41
Additional Readings 41

3 Water Relations and Energy Balance 43

Adapting to Life on Land 44
Water Potential 44
The Soil-Plant-Atmosphere Continuum 45
BOX 3A Measuring Photosynthesis, Transpiration, and Water Potential 46
Transpiration and the Control of Water Loss 48
 Strategies for Coping with Different Water Availability Conditions 49
 Water Use Efficiency 50
 Whole-Plant Adaptations to Low Water Availability 50
 Physiological Adaptations 52
 Anatomical and Morphological Adaptations 54
The Energy Balance of Leaves 61
 Radiant Energy 62
BOX 3B Why the Sky Is Blue and the Setting Sun Is Red 63
 Conduction and Convection 64
 Latent Heat Exchange 65
 Putting It All Together: Leaf and Whole-Plant Temperature 65
 Adaptations to Extreme Temperature Regimes 67
Summary 68
Questions for Further Study 69
Additional Readings 69

PART II **POPULATIONS AND EVOLUTION**

5 Population Structure, Growth, and Decline 101

Some Issues in the Study of Plant Population Growth 102
Population Structure 103
 Some Population Structure Issues Specific to Plants 105
 Sources of Population Structure 106

4 Soils, Mineral Nutrition, and Belowground Interactions 71

Soil Composition and Structure 71
 Soil Texture 72
 Soil pH 74
 Horizons and Profiles 75
 Origins and Classification 77
 Organic Matter and the Role of Organisms 80
Water Movement within Soils 80
Plant Mineral Nutrition 82
 The Stoichiometry of Nutrients 82
 Nitrogen in Plants and Soils 83
 Biological Nitrogen Fixation 84
BOX 4A Symbioses and Mutualisms 86
 Phosphorus in Soils 88
 Nutrient Use Efficiency 88
 Leaf Life Span and Evergreen versus Deciduous Leaves 90
Mycorrhizae 92
 Major Groups of Mycorrhizae 92
 The Role of Mycorrhizae in Plant Phosphorus Nutrition 93
 Other Functions of Mycorrhizae 94
 Orchids and Their Mycorrhizal Associations 95
 Mutualism or Parasitism? 95
 Effects of Mycorrhizae on Plant Interactions 95
Summary 96
Questions for Further Study 97
Additional Readings 97

Studying Population Growth and Decline 106
 Life Cycle Graphs 107
BOX 5A Life Table Calculations 108
BOX 5B Borrowing the Mark-Recapture Method from Animal Ecology 109
BOX 5C Constructing Matrix Models 110
 Matrix Models 110
BOX 5D Demography of an Endangered Cactus 111

BOX 5E Multiplying a Population Vector by a Matrix 111
 Analyzing Matrix Models 112
 But Real Plants Live in Variable Environments 113
 Lifetime Reproduction: The Net Reproductive Rate 113
 Reproductive Value: The Contribution of Each Stage to Population Growth 113

BOX 5F Reproductive Value 114

BOX 5G How Do Changes in the Transition Probabilities Affect the Population Growth Rate? 115

Sensitivity and Elasticity 115
 Life Table Response Experiments 116
 Age and Stage, Revisited 117
 Other Approaches to Modeling Plant Demography 118

Demographic Studies of Long-Lived Plants 119

Random Variation in Population Growth and Decline 122

Causes of Random Variation 122
 Long-Term Growth Rates 123
 Studying Variable Population Growth 125

Summary 126

Questions for Further Study 127

Additional Readings 127

6 Evolutionary Processes and Outcomes 129

Natural Selection 130

Variation and Natural Selection 130
 The Factors Necessary for Natural Selection 131

Heritability 133

Resemblance among Relatives 133
 Partitioning Phenotypic Variation 134

BOX 6A A Simple Genetic System and the Resemblance of Relatives 135

Genotype-Environment Interactions 136
 Gene-Environment Covariation 136

Patterns of Adaptation 137

Heavy-Metal Tolerance 137
 Adaptive Plasticity 140

Levels of Selection 142

Other Evolutionary Processes 143

Processes that Increase Variation 143
 Processes that Decrease Variation 143

Variation among Populations 145

Ecotypes 145

Speciation 149

Adaptation and Speciation through Hybridization 151

Summary 152

Questions for Further Study 153

Additional Readings 153

7 Growth and Reproduction of Individuals 155

Plant Growth 155

Ecology of Growth 157

Plant Architecture and Light Interception 157
 Growth of Clonal Plants 158

Plant Reproduction 160

Vegetative Reproduction 160
 Seeds Produced Asexually 161
 Sexual Life Cycles of Plants 161

Pollination Ecology 163

Wind Pollination 163
 Attracting Animal Visitors: Visual Displays 165
 Attracting Animal Visitors: Floral Odors and Acoustic Guides 166
 Limiting Unwanted Visits 168
 Pollination Syndromes 168

BOX 7A Specialized Plants and Pollinators 169

Aquatic Plants and Pollination 170

BOX 7B Some Complex Plant-Pollinator Interactions 171

Who Mates with Whom? 172

Plant Gender 172

BOX 7C Pollination Experiments 173

Competition for Pollinators and among Pollen Grains 173
 Pollen Dispersal and Its Consequences 174
 Assortative Mating 176
 Frequency-Dependent Selection 176
 Factors that Shape Plant Mating Systems 177
 Applications of Pollination and Mating System Ecology 178

The Ecology of Fruits and Seeds 179

Seed Dispersal Patterns 180

Seed Banks 183

Summary 183

Questions for Further Study 184

Additional Readings 184

8 *Plant Life Histories* 185

Size and Number of Seeds 185

Life History Strategies 188

Life Span 189

r- and *K*-selection 190

Grime's Triangular Model 191

Demographic Life History Theory 193

Reproductive Allocation 193

Difficulties in Measuring Trade-Offs 194

Variation among years 195

Consequences of Variable Environments 195

Seed Germination 195

Masting 196

Phenology: Within-Year Schedules of Growth and Reproduction 198

Vegetative Phenology 198

Reproductive Phenology: Abiotic Factors 199

Reproductive Phenology: Biotic Factors 201

Summary 201

Questions for Further Study 202

Additional Readings 202

PART III

COMMUNITIES AND THEIR CAUSES

9 *Community Properties* 205

What Is a Community? 205

The History of a Controversy 206

BOX 9A Communities, Taxa, Guilds, and Functional Groups 207

A Modern Perspective on the Issues in Contention 210

Are Communities Real? 211

BOX 9B A Deeper Look at Some Definitions: Abiotic Factors and Emergent Properties 212

Describing Communities 212

Species Richness 213

Diversity, Evenness, and Dominance 215

Sampling Methods and Parameters for Describing Community Composition 217

Physiognomy 219

Long-Term Studies 221

Summary 221

BOX 9C The Long-Term Ecological Research Network 222

Questions for Further Study 222

Additional Readings 223

10 *Competition and Other Interactions Among Plants* 225

Competition at the Level of Individuals 226

Seedlings: Density, Size, Inequality, and Timing of Emergence 226

Seedlings: Density and Mortality 229

Mechanisms of Competition for Resources 230

Size and Resource Competition 232

Experimental Methods for Studying Competition 233

Greenhouse and Garden Experiments 233

BOX 10A How Competition Is Measured, and Why That Matters 234

Field Experiments 236

From Interspecific Competition to Allelopathy to Facilitation 237

Trade-offs and Strategies 237

Competitive Hierarchies 239

Allelopathy 240

Facilitation 242

Modeling Competition and Coexistence 244

Equilibrium Models 245

Nonequilibrium Approaches to Modeling Competition 246

Effects of Competition on Species Coexistence and Community Composition 248

Competition along Environmental Gradients 249

- Conceptual Models of Competition in Habitats with Differing Productivities 249
- Experimental Evidence 251
- Evidence from Research Syntheses 253
- Resolution of Differing Results 255
- Summary 255**
- Questions for Further Study 256**
- Additional Readings 256**

11 *Herbivory and Plant-Pathogen Interactions* 257

Herbivory at the Level of Individuals 258

Herbivory and Plant Populations 259

- Herbivory and Spatial Distribution of Plants 260
- Granivory 261
- Biological Control 261

Effects of Herbivory at the Community Level 263

- Consequences of Herbivore Behavior 263
- Apparent Competition 263
- Introduced and Domesticated Herbivores 264
- Effects of Native Herbivores 265
- Generality 267

Plant Defenses against Herbivory 267

- Physical Defenses 267
- Plant Secondary Chemistry 269
- Constitutive versus Induced Defenses 271
- Evolutionary Consequences of Plant-Herbivore Interactions 272

Parasitic Plants 274

Pathogens 275

- Effects of Disease on Individual Plants 275
- BOX IIA Effects of Plant Disease on Humans: Potato Blight and the Irish Potato Famine 276**
- Physiological and Evolutionary Responses to Pathogens 277
- Effects of Pathogens at the Population and Community Level 278
- More Complex Interactions 279

Summary 280

Questions for Further Study 280

Additional Readings 280

12 *Disturbance and Succession* 283

Theories of the Mechanisms of Succession 284

Disturbance 285

- Gaps 286
- Fire 287
- Wind 291
- Water 292
- Animals 292
- Earthquakes and Volcanoes 293
- Disease 293
- Humans 293

Colonization 293

Determining the Nature of Succession 294

- Interaction between Methodology and Understanding 294
- Mechanisms Responsible for Successional Change 297
- The Predictability of Succession 300
- Community Restoration 301

Primary Succession 302

Climax Revisited 303

Summary 304

Questions for Further Study 305

Additional Readings 305

13 *Local Abundance, Diversity, and Rarity* 307

Dominance 307

- Are Dominant Species Competitively Superior? 308
- Abundance Curves 308

Rarity and Commonness 309

- The Nature of Rarity 309
- Patterns of Rarity and Commonness 310
- Causes of Rarity and Commonness 311

Invasive Species and Community Susceptibility to Invasion 313

- Why Do Some Species Become Invasive? 314
- What Makes a Community Susceptible to Invasion? 315

Abundance and Community Structure 317

- Productivity and Diversity 318
- Niche Differentiation, Environmental Heterogeneity, and Diversity 320

Gaps, Disturbance, and Diversity 321	Regional Processes 323
Effects of Increasing Diversity 321	Summary 324
Testing the Effects of Diversity on Ecosystems 322	Questions for Further Study 324
Diversity and Stability 323	Additional Readings 324

PART IV ECOSYSTEMS AND LANDSCAPES

14 Ecosystem Processes 327

Biogeochemical Cycles: Quantifying Pools and Fluxes 328

The Global Water Cycle 330

Carbon in Ecosystems 332

Productivity 332

Methods for Estimating Productivity 335

Decomposition and Soil Food Webs 337

Carbon Storage 340

Models of Ecosystem Carbon Cycles 341

Nitrogen and the Nitrogen Cycle at Ecosystem and Global Levels 342

Nitrogen Fixation 342

Other Sources of Nitrogen Input to Living Organisms 343

Nitrogen Mineralization 344

Denitrification and Leaching of Nitrogen 345

Decomposition Rates and Nitrogen Immobilization 345

Plant Uptake of Nitrogen 346

Phosphorus in Terrestrial Ecosystems 347

Ecosystem Nutrient Cycling and Plant Diversity 348

Ecosystem Processes for Some Other Elements 348

Sulfur 348

Calcium 349

BOX 14A Serpentine Soils 349

Summary 350

Questions for Further Study 351

Additional Readings 351

15 Communities in Landscapes 353

Comparing Communities 353

Non-numerical Techniques 354

Univariate Techniques 354

Multivariate Techniques 354

Landscape Patterns 357

Ordination: Describing Patterns 357

Determining Causes of Patterns 358

Types of Data 360

Classification 360

BOX 15A Differentiating Vegetation Based on Spectral Quality 363

Views on Continuous versus Discrete Landscapes 364

Landscape Diversity 364

Differentiation Diversity 364

Pattern Diversity 365

Summary 366

Questions for Further Study 366

Additional Readings 367

16 Landscape Ecology 369

Spatial Patterns 370

Six Types of Species-Area Curves 371

Defining Patches 373

Quantifying Patch Characteristics and Interrelationships 373

The Effects of Spatial Patterns on Ecological Processes 374

Scale 375

Definitions and Concepts 375

Process and Scale 377
 Spatial and Ecological Scale 377
 Quantifying Aspects of Spatial Pattern and Scale 378

Toward a Theoretical Basis for Landscape Patterns: Island Biogeography Theory 379
 Metapopulation Theory 380
BOX 16A Metapopulation Models 381
 Metapopulation Patterns 381

Species-Time-Area Relationships 383
Landscape Ecology and Conservation 384
 Reserve Design 384
 Fragmentation 385
 Edges, Connectivity, and Nestedness 386
Summary 387
Questions for Further Study 388
Additional Readings 388

PART V GLOBAL PATTERNS AND PROCESSES

17 Climate and Physiognomy 391

Climate and Weather 391

Temperature 392

Short-Term Variation in Radiation and Temperature 393
 Long-Term Cycles 397

Precipitation 398

Global Patterns 399

BOX 17A The Coriolis Effect 400

Continental-Scale Patterns 403
 Seasonal Variation in Precipitation 406
 The El Niño Southern Oscillation 407
 Predictability and Long-Term Change 410

Plant Physiognomy across the Globe 411

Forests 411
 Tree Line 412
 Grasslands and Woodlands 413
 Shrublands and Deserts 414

Summary 415

Questions for Further Study 416

Additional Readings 416

18 Biomes 417

Categorizing Vegetation 417

Converging Biomes and Convergent Evolution 420

Moist Tropical Forests 423

Tropical Rainforest 423
 Tropical Montane Forest 425

Seasonal Tropical Forests and Woodlands 425

Tropical Deciduous Forest 426
 Thorn Forest 427
 Tropical Woodland 427

Temperate Deciduous Forest 428

Other Temperate Forests and Woodlands 429
 Temperate Rainforest 429
 Temperate Evergreen Forest 431
 Temperate Woodland 432

Taiga 432

Temperate Shrubland 433

Grasslands 435

Temperate Grassland 435
 Tropical Savanna 436

Deserts 438

Hot Desert 438
 Cold Desert 439

Alpine and Arctic Vegetation 439

Alpine Grassland and Shrubland 439
 Tundra 441

Summary 442

Questions for Study and Thought 443
Additional Readings 443

19 *Regional and Global Diversity* 445

Large-Scale Patterns of Species Richness	446
General Factors Affecting Diversity	447
Levels of Explanation	447
Null Models	448
The Importance of Available Energy	449
Contributions of α , β , and γ Diversity	452
Diversity along Ecological Gradients	452
Productivity and Scale	453
Diversity along Latitudinal Gradients	455
An Array of Explanations	455
The Role of β Diversity	457
Continental Differences	457
Other Geographic Patterns	459
Species Diversity and Patterns of Overlap	459
Endemism, Centers of Diversification, and Isolation	460
Relationships between Regional and Local Diversity	461
BOX 19A The Fynbos and the Cape Region of Africa	462
Noisy Data and Limits to Methodology	464
Summary	466
Questions for Further Study	466
Additional Readings	467

21 *Global Change: Humans and Plants* 485

Carbon and Plant-Atmosphere Interactions	486
The Global Carbon Cycle	486
Direct Effects of Increasing CO ₂ on Plants	487
Anthropogenic Global Climate Change	488
The Greenhouse Effect	488
Global Climate Change: Evidence	490
Global Climate Change: Predictions	493
BOX 21A Modeling Climate	492
Biotic Consequences of Climate Change	495
Anthropogenic Effects on the Global Carbon Cycle	498
Deforestation	498
Fossil Fuel Combustion	499
BOX 21B Daily Human Activities and CO ₂ Generation	501
Acid Precipitation and Nitrogen Deposition	502
Declining Global Biodiversity and Its Causes	504
Habitat Fragmentation and Loss	504
Other Threats to Rare and Common Species in a Range of Communities	508
Invasive Species as Threats to Biodiversity	509
Human Populations and Land Use Patterns	509
A Ray of Hope? Summary	512
Questions for Further Study	513
Additional Readings	513

20 *Paleoecology* 469

The Paleozoic Era	470
The Mesozoic Era	473
The Dominance of Gymnosperms	473
The Breakup of Pangaea and the Rise of the Angiosperms	474
The Cretaceous-Tertiary (K-T) Boundary	475
The Cenozoic Era	475
Paleoecology Methods	476
The Recent Past	477
At the Glacial Maximum	478
Glacial Retreat	480
Climatic Fluctuations in the Recent Past	482
Summary	484
Questions for Further Study	484
Additional Readings	484

Appendix: A Statistics Primer	515
Glossary	519
Photo Credits	530
Literature Cited	531
Index	554