

Contents

Preface	ix
Acknowledgements	xi
1 Introduction	1
1.1 What Are the Tasks in Proteomics?	1
1.2 Challenges in Proteomics	5
1.3 Proteomics in Relation to Other -omics and System Biology	10
1.4 Some General Applications of Proteomics	12
1.5 Structure of the Book	18
References	18
2 Separation and Detection Technologies	21
2.1 Introduction to Experimental Strategies in Proteomics	21
2.2 Gel-Based Separation	31
2.3 Visualization and Analysis of Proteins/Peptides in Gels	40
2.4 Gel-Free Separation Technologies	54
2.5 Visualization of Proteins/Peptides from Hyphenated Methods	74
2.6 Chips in Proteomic Applications	81
References	81
3 Analysis of Peptides/Proteins by Mass Spectrometry	83
3.1 Basic Principles of Mass Spectrometry for Proteomics	83
3.2 Ionization Methods for Small Amounts of Biomolecules	101
3.3 Mass Analyzers and Mass Spectrometers	116
3.4 Concluding Remarks on Mass Analyzers for Proteomics	170
References	170
4 Analysis and Interpretation of Mass Spectrometric and Proteomic Data	173
4.1 Introduction	173
4.2 Analysis of MS Data	174
4.3 Analysis of MS/MS Data	192
4.4 Quantification of LC MS and MS/MS Data from Complex Samples	209
4.5 Bioinformatic Approaches for Mass Spectrometric Proteome Data Analysis	213
References	218

5 Strategies in Proteomics	221
5.1 Imaging Mass Spectrometry	221
5.2 Qualitative Proteomics	223
5.3 Differential and Quantitative Proteomics	234
5.4 Analysis of Posttranslational Modifications	257
5.5 Interaction Proteomics	261
5.6 Proteomics as Part of Integrated Approaches	266
References	271
Index	275