

## Contents

|                |                                                      |    |
|----------------|------------------------------------------------------|----|
| <i>Preface</i> | 9                                                    |    |
| Chapter 1      | <b>Flow Properties—An Introduction</b>               | 1  |
| 1.1            | Introduction                                         | 1  |
| 1.2            | Rheological Equations of State                       | 2  |
| 1.2.1          | The Ideal (Elastic) Solid (Hookean Solid)            | 3  |
| 1.2.2          | The Pascallian Fluid                                 | 5  |
| 1.2.3          | The Ideal Fluid—Newtonian Fluid                      | 5  |
| 1.3            | Non-Newtonian Fluids                                 | 7  |
| 1.3.1          | Time-Independent Fluids                              | 8  |
| 1.3.2          | Time-Dependent Fluids                                | 14 |
| 1.3.3          | Elastocoviscous Fluids                               | 16 |
| References     | 20                                                   |    |
| Chapter 2      | <b>Flow Through Channels of Simple Cross Section</b> | 21 |
| 2.1            | Introduction                                         | 21 |
| 2.2            | Flow through a Pipe (capillary flow)                 | 21 |
| 2.2.1          | Shear Stress at the Wall of a Pipe                   | 22 |
| 2.2.2          | Shear Rate at Wall                                   | 24 |
| 2.2.3          | Simplification of the Rabinowitsch Equation          | 26 |
| 2.2.4          | The Special Case of a Power Law Fluid                | 28 |
| 2.2.5          | The Special Case of Newtonian Fluids                 | 29 |
| 2.2.6          | Another Look at Apparent Viscosity                   | 29 |
| 2.3            | Flow Between Parallel Plates                         | 30 |
| 2.4            | Flow through an Annulus                              | 31 |
| 2.5            | Summary                                              | 31 |
|                | Appendix                                             | 32 |
|                | References                                           | 34 |

|                                                            |    |
|------------------------------------------------------------|----|
| <b>Chapter 3 Measurement of Flow Properties</b>            | 35 |
| 3.1 Introduction                                           | 35 |
| 3.2 Types of Capillary Viscometers                         | 35 |
| 3.3 Review of Assumptions                                  | 36 |
| 3.3.1 No-Slip                                              | 36 |
| 3.3.2 Time-Independence                                    | 37 |
| 3.3.3 Constant Flow Pattern                                | 38 |
| 3.3.4 Isothermal Flow                                      | 39 |
| 3.3.5 Incompressibility                                    | 39 |
| 3.4 Corrections to Data obtained from Capillary Rheometers | 39 |
| 3.4.1 Entrance-effect Corrections                          | 40 |
| 3.4.2 Elastic Absorbence of Energy                         | 41 |
| 3.4.3 Head Effects                                         | 42 |
| 3.4.4 Kinetic Energy Effects                               | 45 |
| 3.5 Summary                                                | 45 |
| References                                                 | 46 |
| <br>                                                       |    |
| <b>Chapter 4 Factors Affecting Viscous Flow</b>            | 47 |
| 4.1 Introduction                                           | 47 |
| 4.2 Effect of Temperature                                  | 47 |
| 4.3 Effect of Pressure                                     | 50 |
| 4.3.1 Volume Viscosity                                     | 54 |
| 4.3.2 Shear-Induced Crystallisation                        | 54 |
| 4.4 Effect of Shear History                                | 55 |
| 4.5 Viscosity Changes during Extrusion                     | 57 |
| 4.6 Effect of Molecular Structure on Viscous Flow          | 59 |
| References                                                 | 62 |
| <br>                                                       |    |
| <b>Chapter 5 Elastic Effects in Polymer Melt Flow</b>      | 63 |
| 5.1 Introduction                                           | 63 |
| 5.2 Die Swell                                              | 63 |
| 5.3 Elastic Turbulence or Melt Fracture                    | 69 |
| 5.3.1 Mechanism of Elastic Turbulence                      | 74 |
| 5.3.2 Smooth Flow at Very High Shear Rates                 | 77 |
| 5.4 Sharkskin                                              | 78 |
| 5.4.1 Mechanism of Sharkskin                               | 80 |
| 5.5 Frozen-In Orientation                                  | 81 |
| 5.6 Draw-down                                              | 84 |
| 5.7 Measurement of Elastic Effects                         | 87 |
| References                                                 | 88 |

|                                                                               |     |
|-------------------------------------------------------------------------------|-----|
| <b>Chapter 6 The Application of Rheological Studies to Polymer Processing</b> | 89  |
| 6.1 Introduction                                                              | 89  |
| 6.2 Extrusion                                                                 | 90  |
| 6.3 Injection Moulding                                                        | 94  |
| 6.3.1 Elastic Effects in Injection Moulding                                   | 95  |
| 6.3.2 Compressibility and Shrinkage Effects                                   | 99  |
| 6.4 Bottle Blowing and Related Blow Moulding Operations                       | 104 |
| 6.5 Compression and Transfer Moulding of Thermosetting Materials              | 109 |
| 6.6 Transfer Moulding of Thermosetting Materials                              | 113 |
| 6.7 Calendering                                                               | 115 |
| 6.8 Vacuum Forming and Related Shaping Applications                           | 116 |
| 6.9 Flow Properties of Individual Thermoplastics                              | 116 |
| 6.9.1 Polyethylene                                                            | 116 |
| 6.9.2 Polypropylene                                                           | 119 |
| 6.9.3 Poly-4-methyl Pentene-1                                                 | 120 |
| 6.9.4 Polystyrene                                                             | 120 |
| 6.9.5 Polymethyl methacrylate                                                 | 121 |
| 6.9.6 Polyvinyl chloride                                                      | 121 |
| 6.9.7 The Nylons                                                              | 122 |
| 6.9.8 Polyacetals                                                             | 123 |
| 6.9.9 Polytetrafluoroethylene (PTFE)                                          | 123 |
| 6.9.10 Tetrafluoroethylene-Hexafluoropropylene Copolymers                     | 123 |
| 6.9.11 Polycarbonates                                                         | 124 |
| 6.9.12 Polysulphones                                                          | 124 |
| References                                                                    | 124 |
| <b>Chapter 7 More Complex Rheological Problems</b>                            | 126 |
| 7.1 Introduction                                                              | 126 |
| 7.2 Components of Stress                                                      | 128 |
| 7.3 Time Derivatives                                                          | 134 |
| 7.4 The Equation of Continuity                                                | 136 |
| 7.5 The Equations of Momentum                                                 | 138 |
| 7.6 Examples of Applications of Continuum Mechanics in Rheology               | 142 |
| 7.6.1 Shear Stress in Capillary Flow                                          | 142 |
| 7.6.2 Flow in the Melt Zone of a Single Screw Extruder                        | 143 |

|                                                         |                                                                 |     |
|---------------------------------------------------------|-----------------------------------------------------------------|-----|
| 7.6.3                                                   | Other Flow Problems Solved by Use of<br>Continuum Mechanics     | 150 |
| 7.6.4                                                   | Normal Stresses in Simple Shearing Flow                         | 150 |
| 7.7                                                     | Measurement of Elastic Effects in Polymer Flow                  | 153 |
|                                                         | References                                                      | 158 |
| <b>Chapter 8 Tensile Deformation in Molten Polymers</b> |                                                                 | 159 |
| 8.1                                                     | Introduction                                                    | 159 |
| 8.2                                                     | Measurement of Tensile Deformation                              | 160 |
| 8.3                                                     | Traction Viscosity of Polymer Melts                             | 162 |
| 8.4                                                     | Significance of Traction Viscosity in Polymer<br>Processes      | 164 |
| 8.5                                                     | Elastic Strains in Tension                                      | 165 |
| 8.6                                                     | Melt Strength                                                   | 166 |
|                                                         | References                                                      | 166 |
| <b>Appendix</b>                                         |                                                                 |     |
| A.1                                                     | Shear Stress at the Wall during Flow between<br>Parallel Plates | 167 |
| A.2                                                     | Shear Rate at Wall of Plate                                     | 168 |
| A.3                                                     | The Special Case of Power Law Fluids in<br>Parallel Plate Flow  | 171 |
| A.4                                                     | The Special Case of Newtonian Fluids in<br>Parallel Plate Flow  | 173 |
| A.5                                                     | Flow through an Annulus                                         | 173 |
| A.6                                                     | Shear Stress in Slit Flow                                       | 175 |
| A.7                                                     | Velocity Distribution in a Pipe                                 | 176 |
| A.8                                                     | Velocity Distribution between Parallel Plates                   | 178 |
| A.9                                                     | Analysis of Slippage in Capillary Flow                          | 180 |
|                                                         | Suggestions for Further Reading                                 | 181 |
| <i>Index</i>                                            |                                                                 | 185 |