

C O N T E N T S

A. ETHYLENE BIOSYNTHESIS AND MODE OF ACTION

1. The formation of ethylene from 1-aminocyclopropane-1-carboxylic acid	1
S.F. Yang	
2. The biochemistry and physiology of 1-aminocyclopropane-1-carboxylic acid conjugation	11
N. Amrhein, U. Dorzok, C. Kionka, U. Kondziolka, H. Skorupka and S. Tophof	
3. Model systems for the formation of ethylene from 1-amino-cyclopropane-1-carboxylic acid	21
J.E. Thompson, R.L. Legge, D.G. McRae and P.S. Covello	
4. Occurrence of membrane-bound enzyme catalyzing the formation of ethylene from 1-aminocyclopropane-1-carboxylic acid from carnation plants	33
S. Mayak, Z. Adam and A. Borochov	
5. Distribution and properties of ethylene-binding from plant tissue	45
E.C. Sisler	
6. Binding sites for ethylene	55
M.A. Hall, A.R. Smith, C.J.R. Thomas and C.J. Howarth	

7. Why do plants metabolize ethylene?	65
E.M. Beyer, Jr.	
8. Role of ethylene oxidation in the mechanism of ethylene action	75
F.B. Abeles	
9. Superinduction of ACC synthase in tomato pericarp by lithium ions	87
T. Boller	
10. 1-aminocyclopropane-1-carboxylic acid (ACC)-dependent ethylene synthesis in vacuoles of pea and bean leaves	89
M. Guy and H. Kende	
11. ACC conversion to ethylene by mitochondria from etiolated pea (<i>Pisum sativum</i>) seedlings	91
C. Vinkler and A. Apelbaum	
12. Wound-induced ethylene production and its control in the mesocarp tissue of winter squash fruit	93
H. Hyodo, K. Tanaka, K. Watanabe and N. Aoshima	
13. Characterization of the carbohydrates-stimulated ethylene production in tobacco leaf discs	95
S. Philosoph-Hadas, S. Meir and N. Aharoni	
14. Role of sucrose in the metabolism of IAA-conjugates as related to ethylene production by tobacco leaf discs	97
S. Meir, S. Philosoph-Hadas, E. Epstein and N. Aharoni	

15. The effect of cycloalkenes on ethylene binding 99
A.R. Smith, C.J. Howarth, I.O. Sanders and M.A. Hall

B. ETHYLENE IN DEVELOPMENT AND SENESCENCE

16. Ethylene and flower senescence 101
R. Nichols

17. On ethylene, calcium and oxidative mediation of whole apple fruit senescence by core control 111
Y.Y. Leshem, I.B. Ferguson and S. Grossmann

18. Ethylene-mediated growth response in submerged deep-water rice 121
H. Kende, J.P. Metraux and I. Raskin

19. Control of the biosynthesis of ethylene in senescing tissues 129
N. Aharoni, S. Philosoph-Hadas and S. Meir

20. Wound-induced increase in 1-aminocyclopropane-1-carboxylate synthase activity: regulatory aspects and membrane association of the enzyme 139
A.K. Mattoo and J.D. Anderson

21. Reduced S-adenosylmethionine decarboxylase activity in ethylene-treated etiolated pea seedlings 149
A. Apelbaum, I. Icekson and A. Goldlust

22. 1-aminocyclopropane-1-carboxylic acid (ACC) and ethylene production during senescence of oat leaf segments	159
R. Preger and S. Gepstein	
23. Effect of naturally produced ethylene in tissue culture jars	161
R. Jona, I. Gribaudo and R. Vigliocco	
24. Involvement of ethylene in <i>Liatriis</i> corm dormancy	163
V. Keren-Paz and A. Borochov	
25. Endogenous ethylene production and flowering of Bromeliaceae	165
M. De Proft, L. Jacobs and J.A. De Greef	
26. Role of ethylene in distribution of assimilates in carnations	167
H. Veen and A.A.M Kwakkenbos	
27. Characterization of an endogenous inhibitor of ethylene biosynthesis in carnation petals	169
H. Itzhaki, A. Borochov and S. Mayak	

C. ETHYLENE IN STRESS AND DISEASE

28. Regulation of pathogenesis and symptom expression in diseased plants by ethylene	171
L.C. Van Loon	

29. Ethylene biosynthesis in tobacco leaf discs in relation to ethylene treatment, Cellulysin application and fungal infection 181
E. Chalutz, A.K. Mattoo and J.D. Anderson

30. Purification and properties of the ethylene-inducing factor from the cell wall digesting mixture, Cellulysin 189
J.D. Anderson, E. Chalutz and A.K. Mattoo

31. The involvement of callose and elicitors in ethylene production caused by mechanical perturbation 199
M.J. Jaffe

32. Elicitors and ethylene trigger defense response in plants 217
M.T. Esquerre-Tugayé, D. Mazau, B. Pelissier, D. Roby and A. Toppan

33. The role of ethylene in the pathogenic symptoms by *Meloidogyne javanica* nematode-infected tomato plants 219
I. Glazer, A. Apelbaum and D. Orion

D. ETHYLENE IN THE CONTROL OF ABSCISSION

34. Abscission and recognition of zone specific target cells 221
D.J. Osborne and M.T. McManus

35. Is ethylene the natural regulator of abscission? 231
P.W. Morgan

36. Anatomical aspects of citrus abscission - effect of ethylene on leaf and fruit explants	241
R. Goren, M. Huberman and E. Zambski	
37. Ethephon action in growth and abscission control	255
S. Lavee	
38. Effect of ethylene on indol-3-acetic acid transport, metabolism and level in leaf tissues of woody plants during abscission	267
J. Riov, O. Sagee and R. Goren	
39. Effects of the defoliant thidiazuron on leaf abscission and ethylene evolution from cotton seedlings	277
J.C. Suttle	
40. Ethylene and auxin transport and metabolism in peach fruit abscission	279
A. Ramina, A. Masia and G. Vizzotto	

E. ETHYLENE IN FRUIT RIPENING AND STORAGE

41. Ethylene and the control of tomato fruit ripening	281
G.E. Hobson, J.E. Harman and R. Nichols	
42. Experiments to prevent ethylene biosynthesis and/or action and effect of exogenous ethylene on ripening and storage of apple fruit	291
F. Bangerth, G. Bufler and H. Halder-Doll	

43. Possible role of fruit cell wall oxidative activity in ethylene evolution	303
C. Frenkel and M.K. Mukai	
44. Compartmentation of amino acids in tomato fruit pericarp tissue	317
J.E. Baker and R.A. Saftner	
45. Effect of salinity on the ripening process in tomato fruit: possible role of ethylene	329
Y. Mizrahi and S. (Malis) Arad	
46. Effect of mannose on ethylene evolution and ripening of pear fruit	333
C.B. Watkins and C. Frenkel	
 F. PARTICIPANTS	335
 G. INDEX	343