

Contents

List of Contributors.....	xi
Preface	xv

PART 1 INTRODUCTORY CONCEPTS

CHAPTER 1 What is CO₂? Thermodynamics, Basic Reactions and Physical Chemistry.....	3
1.1 Introduction.....	3
1.2 Spectroscopy and its role in climate change	5
1.3 Phase behaviour and solvent properties	6
1.4 Kinetics and thermodynamics.....	8
1.5 Commercially important reactions of carbon dioxide.....	12
CHAPTER 2 Carbon Dioxide Capture Agents and Processes.....	19
2.1 Carbon dioxide sources	19
2.2 Capture processes.....	20
2.3 Carbon dioxide capture agents.....	22
2.3.1 Amine solvents	22
2.3.2 Poly(ethylene glycol ether)s.....	26
2.3.3 Alkyl carbonates	27
2.3.4 Chilled ammonia process.....	27
2.4 Future perspectives	28
2.4.1 Ionic liquids	28
2.4.2 Polymer-supported capture agents	29
2.4.3 Metal organic frameworks	30
2.5 Concluding remarks.....	31
CHAPTER 3 CO₂-Derived Fuels for Energy Storage	33
3.1 Introduction.....	33
3.2 The decarbonisation of electrical generation.....	35
3.2.1 Matching supply to demand in electrical grids.....	35
3.2.2 The possible role of chemical energy storage in supporting electrical grids	38
3.3 The decarbonisation of transport	40
3.3.1 The scope of the market	40
3.3.2 Synthetic fuels for transport	40
3.4 The decarbonisation of heat	41
3.4.1 The nature of the market	42

3.4.2 The possible roles of chemical energy storage in heat markets.....	43
3.5 Conclusion.....	43
CHAPTER 4 Environmental Assessment of CO₂ Capture and Utilisation.....	45
4.1 Introduction: Why do we need a reliable environmental assessment of CO ₂ utilisation?.....	45
4.2 Green chemistry and environmental assessment tools	46
4.3 Life cycle assessment.....	47
4.4 ISO standardisation of LCA	48
4.5 How to conduct an LCA for CO ₂ capture and utilisation?	49
4.5.1 Phase 1: goal and scope definition.....	49
4.5.2 Phase 2: Life cycle inventory analysis.....	52
4.5.3 Phase 3: Life cycle impact assessment	53
4.5.4 Phase 4: Interpretation.....	54
4.6 Conclusions for LCA of CCU.....	55
PART 2 CONTRIBUTION TO MATERIALS	
CHAPTER 5 Polymers from CO₂—An Industrial Perspective.....	59
5.1 Introduction.....	59
5.2 Challenges in CO ₂ utilisation	59
5.3 Polymers based on CO ₂	60
5.4 Polymers based on CO ₂ —direct approach.....	61
5.5 Polymers based on CO ₂ —indirect approach.....	67
5.6 Industrial example: direct epoxide/CO ₂ copolymerization.....	67
5.7 Summary and outlook	69
CHAPTER 6 CO₂-based Solvents.....	73
6.1 Introduction.....	73
6.2 CO ₂ as a solvent	74
6.2.1 Liquid CO ₂	75
6.2.2 Supercritical CO ₂	77
6.3 CO ₂ -expanded liquids	82
6.3.1 Expansion and the resulting changes in properties.....	82
6.3.2 Applications of CO ₂ -expanded liquids	85
6.4 CO ₂ -responsive switchable solvents.....	87
6.4.1 Switchable polarity solvents (SPS)	88
6.4.2 Switchable hydrophilicity solvents	89
6.4.3 Switchable water.....	90
6.5 Conclusions.....	92

CHAPTER 7	Organic Carbonates.....	97
7.1	Introduction.....	97
7.2	Carbonates from cyclic ethers.....	98
7.3	Linear carbonates from alcohols	100
7.4	Cyclic carbonate from diols	105
7.5	Effect of drying agents	107
7.6	Oxidative carboxylation of alkenes.....	110
7.7	Industrial potential.....	111

CHAPTER 8 Accelerated Carbonation of Ca- and Mg-Bearing Minerals and Industrial Wastes Using CO₂..... 115

8.1	Introduction.....	115
8.2	Engineered weathering of silicate minerals	119
8.2.1	Reaction schemes.....	119
8.2.2	Single-step carbon mineralization.....	122
8.2.3	Two-step carbon mineralization	124
8.2.4	Accelerated mineral dissolution	125
8.2.5	Enhanced hydration of CO ₂ and formation of different carbonate phases.....	125
8.2.6	Summary of environmental implications and potential benefits	126
8.3	Carbonation of alkaline industrial wastes.....	127
8.3.1	Wastes from power generation.....	129
8.3.2	Wastes from the production of cement, construction material and paper.....	129
8.3.3	Wastes from steel and aluminium production	133
8.3.4	Summary of environmental implications and potential benefits	134

PART 3 ENERGY AND FUELS

CHAPTER 9 Conversion of Carbon Dioxide to Oxygenated Organics.....

9.1	Introduction.....	141
9.2	Methanol production.....	143
9.2.1	Methanol synthesis and manufacture.....	144
9.2.2	Methanol uses and derivatives	152
9.3	Dimethyl ether.....	154
9.4	Other oxygenates.....	156
9.5	Concluding remarks.....	156

CHAPTER 10 The Indirect and Direct Conversion of CO₂ into Higher Carbon Fuels.....	161
10.1 The (inevitable) coupled nature of our energy and CO ₂ emission challenges	161
10.2 The concept of carbon-neutral liquid hydrocarbon fuels	163
10.3 The conversion or utilisation of CO ₂	164
10.3.1 Thermodynamic considerations	166
10.3.2 Indirect routes to higher hydrocarbons.....	168
10.3.3 Direct routes to higher hydrocarbons.....	178
10.3.4 Future perspective.....	179
CHAPTER 11 High Temperature Electrolysis.....	183
11.1 Introduction.....	184
11.2 High temperature operation.....	185
11.3 Cell and stack configurations and balance of plant	187
11.4 Cell materials	188
11.4.1 Material requirements.....	188
11.4.2 Operating temperature	189
11.4.3 Electrolytes	189
11.4.4 Electrodes	192
11.5 Electrochemistry	194
11.6 SOC diagnostics.....	196
11.6.1 Electrochemical characterisation of SOECs.....	197
11.7 Electrolysis of carbon dioxide and co-electrolysis of carbon dioxide and steam.....	199
11.7.1 CO ₂ electrolysis	199
11.7.2 Co-electrolysis reaction pathways.....	200
11.7.3 Cell degradation	201
11.7.4 Electrode and electrolyte materials in co-electrolysis.....	203
11.7.5 Direct fuel production	203
11.7.6 Modelling of co-electrolysis	204
11.7.7 Technoeconomic analysis.....	204
11.8 Conclusions.....	205
CHAPTER 12 Photoelectrocatalytic Reduction of Carbon Dioxide.....	211
12.1 Introduction.....	211
12.2 Organizing principles of photoelectrochemical CO ₂ reduction.....	214

12.3 Photovoltaic/electrolyser dual module systems:	
Metal electrodes for CO ₂ conversion.....	218
12.3.1 Semiconductor electrodes for CO ₂ reduction	221
12.4 Group III–V: GaP, InP, GaAs as photocathode for	
CO ₂ reduction.....	222
12.5 Group II–VI: CdTe, and Group IV: Si, SiC	
photoelectrodes	223
12.6 Titanium oxide photoelectrodes.....	224
12.7 Other oxides photoelectrode: Cu ₂ O, CuFeO ₂ , etc	225
12.8 Semiconductor with a molecular co-catalyst.....	226
12.9 Semiconductors decorated with metal electrocatalysts	
for CO ₂ reduction	227
12.10 Summary, conclusion and prospect	229

PART 4 PERSPECTIVES AND CONCLUSIONS

CHAPTER 13 Emerging Industrial Applications	237
13.1 Introduction.....	237
13.2 Scaleup.....	237
13.3 Technology readiness	239
13.4 Methanol pilot plants	241
13.5 CO ₂ reduction on a pilot scale	242
13.6 Reforming reactions on a pilot scale	242
13.7 Polymer pilot plants.....	243
13.8 Mineralization pilot plants	247
13.9 Summary	249
CHAPTER 14 Integrated Capture and Conversion	253
14.1 Introduction.....	253
14.2 Routes to CDU	254
14.3 Integrated CO ₂ utilisation processes.....	255
14.3.1 Mineralisation.....	256
14.3.2 Tri-forming.....	264
CHAPTER 15 Understanding and Assessing Public	
Perceptions of Carbon Dioxide Utilisation	
(CDU) Technologies	273
15.1 Introduction.....	273
15.2 What will the public think of CDU?.....	274
15.3 Assessing public opinions of CDU	278
15.4 Conclusion	281

CHAPTER 16 Potential CO₂ Utilisation Contributions to a More Carbon-Sober Future: A 2050 Vision.....	285
16.1 Context elements.....	285
16.2 Efficiency and new materials to complement CCS efforts....	287
16.3 The massive attention on renewable energy injection.....	290
16.3.1 Catalysed CO ₂ hydrogenation reactions and improved efficiencies on existing plants: the key short-term players.....	292
16.3.2 Electrochemistry as a key mid-term enabling technology.....	294
16.3.3 The long-term goal of solar fuels through photochemistry.....	296
16.4 Bridges among CO₂-to-fuel and specialty chemicals productions.....	297
16.5 When CO₂ supply becomes the issue	298
16.6 Local solutions to global issues.....	298
16.7 Timescales to deployment.....	300
Index.....	303