

Contents

Preface, xiii

List of contributors, xv

Part I Sugarcane for biofuels and bioproducts

1 The sugarcane industry, biofuel, and bioproduct perspectives, 3

Ian M. O'Hara

1.1 Sugarcane – a global bioindustrial crop, 3

1.2 The global sugarcane industry, 5

1.2.1 Sugarcane, 5

1.2.2 Sugarcane harvesting and transport, 6

1.2.3 The raw sugar production process, 7

1.2.4 The refined sugar production process, 9

1.2.5 The sugar market, 11

1.3 Why biofuels and bioproducts?, 11

1.3.1 The search for new revenue, 11

1.3.2 Sugar, ethanol, and cogeneration, 12

1.3.3 Fiber-based biofuels and bioproducts, 13

1.3.4 Climate change and renewable products, 13

1.3.5 New industries for sustainable regional communities, 14

1.4 Sugarcane biorefinery perspectives, 14

1.4.1 The sugarcane biorefinery, 14

1.4.2 The sustainability imperative, 17

1.4.3 Future developments in biotechnology for sugarcane biorefineries, 18

1.5 Concluding remarks, 19

References, 20

2 Sugarcane biotechnology: tapping unlimited potential, 23

Sudipta S. Bhowmik, Anthony K. Brinin, Brett Williams and Sagadevan G. Mundree

2.1 Introduction, 23

2.2 History of sugarcane, sugarcane genetics, wild varieties, 24

- 2.3 Uses of sugarcane, 25
 - 2.3.1 Food and beverages, 25
 - 2.3.2 Biofuels and bioenergy, 26
 - 2.3.3 Fibers and textiles, 26
 - 2.3.4 Value-added products, 26
- 2.4 Sugarcane biotechnology, 26
 - 2.4.1 Limitations of sugarcane biotechnology, 29
- 2.5 Improvement of sugarcane – breeding versus genetic modification through biotechnology, 29
- 2.6 Genetic modification of sugarcane, 30
- 2.7 Paucity of high-quality promoters, 32
- 2.8 Opportunities for GM-improved sugarcane, 32
- 2.9 Improved stress tolerance and disease resistance, 35
 - 2.9.1 Stress tolerance, 35
 - 2.9.2 Drought, 35
 - 2.9.3 Salinity, 35
- 2.10 Naturally resilient plants as a novel genetic source for stress tolerance, 36
- 2.11 Disease resistance, 37
- 2.12 Industrial application of sugarcane, 39
- 2.13 How will climate change and expanded growing-region affect vulnerability to pathogens?, 40
- 2.14 Conclusion and perspectives, 41
- References, 42

Part II Biofuels and bioproducts

- 3** Fermentation of sugarcane juice and molasses for ethanol production, 55
Cecília Laluce, Guilherme R. Leite, Bruna Z. Zavitoski, Thamires T. Zamaia and Ricardo Ventura
 - 3.1 Introduction, 55
 - 3.2 Natural microbial ecology, 56
 - 3.2.1 *Saccharomyces* yeasts, 56
 - 3.2.2 Wild yeasts, 58
 - 3.2.3 Bacterial contaminants, 58
 - 3.3 Yeast identification, 60
 - 3.3.1 Identification of genetic and physiological phenotypes, 60
 - 3.3.2 Molecular identification methods, 61
 - 3.4 Cell surface and cell–cell interactions, 62
 - 3.4.1 Dissolved air flotation, 62
 - 3.4.2 Flocculation, 64
 - 3.4.3 Biofilms, 65
 - 3.5 Sugarcane juice and bagasse, 65

- 3.5.1 Harvesting of the sugarcane, 65
- 3.5.2 Reception and cleaning of sugarcane, 66
- 3.5.3 Juice extraction, 66
- 3.5.4 Juice clarification, 66
- 3.5.5 Juice concentration, 66
- 3.5.6 Quality of clarified juice, 67
- 3.6 Fermentation of juice and molasses, 67
 - 3.6.1 Starters yeasts, 67
 - 3.6.2 Raw materials used in fermentation, 67
 - 3.6.3 The fermentation, 68
- 3.7 Cogeneration of energy from bagasse, 68
- 3.8 Bioreactors and processes, 69
 - 3.8.1 Batch fermentation, 70
 - 3.8.2 Fed-batch fermentation, 70
 - 3.8.3 Multistage Stage Continuous Fermentation (MSCF) system, 72
- 3.9 Control of microbial infections, 73
- 3.10 Monitoring and controlling processes, 74
- 3.11 Concluding remarks and perspective, 76
 - Acknowledgments, 77
- References, 77

- 4 Production of fermentable sugars from sugarcane bagasse, 87**
Zhanying Zhang, Mark D. Harrison and Ian M. O'Hara
 - 4.1 Introduction, 87
 - 4.2 Bioethanol from bagasse, 88
 - 4.3 Overview of pretreatment technologies, 90
 - 4.4 Pretreatment of bagasse, 91
 - 4.4.1 Dilute acid pretreatment, 91
 - 4.4.2 Alkaline pretreatment, 92
 - 4.4.3 Liquid hot water pretreatment, 93
 - 4.4.4 Organosolv pretreatment, 94
 - 4.4.5 Ionic liquid pretreatment, 97
 - 4.4.6 SO₂⁻ and CO₂⁻-associated pretreatments, 98
 - 4.5 Enzymatic hydrolysis, 99
 - 4.6 Fermentation, 100
 - 4.7 Conclusions and future perspectives, 102
- References, 103

- 5 Chemicals manufacture from fermentation of sugarcane products, 111**
Karen T. Robins and Robert E. Speight
 - 5.1 Introduction, 111

- 5.2 The suitability of sugarcane-derived feedstocks in industrial fermentation processes, 114
 - 5.2.1 Competing current applications of sugarcane products, 115
 - 5.2.2 Use of sugarcane products in fermentations, 117
- 5.3 Metabolism and industrial host strains, 121
 - 5.3.1 Metabolism of sucrose, 121
 - 5.3.2 Metabolism of lignocellulose-derived sugars, 124
 - 5.3.3 Optimization of strains and metabolism, 126
- 5.4 Bioprocess considerations, 127
- 5.5 Sugarcane-derived chemical products, 130
- 5.6 Summary, 132
- References, 133

- 6 Mathematical modeling of xylose production from hydrolysis of sugarcane bagasse, 137
 - Ava Greenwood, Troy Farrell and Ian M. O'Hara*
- 6.1 Introduction, 137
- 6.2 Mathematical models of hemicellulose acid pretreatment, 139
 - 6.2.1 Kinetic models of hemicellulose acid hydrolysis, 139
 - 6.2.2 The Saeman kinetic model, 139
 - 6.2.3 The biphasic model, 140
 - 6.2.4 The polymer degradation equation, 143
 - 6.2.5 Other mathematical considerations and models of hemicellulose acid hydrolysis, 146
- 6.3 A mathematical model of sugarcane bagasse dilute-acid hydrolysis, 150
- 6.4 Sensitivity analysis, 153
 - 6.4.1 Experimental solids loadings and fitting the hard-to-hydrolyze parameter, 155
 - 6.4.2 Hemicellulose chain length characteristics and the parameter fitting of k_a and k_b , 156
- 6.5 Conclusions, 159
- References, 160

- 7 Hydrothermal liquefaction of lignin, 165
 - Kameron G. Dunn and Philip A. Hobson*
- 7.1 Introduction, 165
- 7.2 A review of lignin alkaline hydrolysis research, 170
- 7.3 Hydrolysis in subcritical and supercritical water without an alkali base, 186
- 7.4 Solvolysis with hydrogen donor solvent formic acid, 188
- 7.5 Reported depolymerization pathways of lignin and lignin model compounds, 192
- 7.6 The solid residue product, 194

- 7.7 Summary – strategies to increase yields of monophenols, 195
 - 7.7.1 Reaction temperature, 200
 - 7.7.2 Reaction pressure, 201
 - 7.7.3 Reaction time, 201
 - 7.7.4 Lignin loading, 202
 - 7.7.5 Alkali molarity, 202
 - 7.7.6 Monomer separation, 202
 - 7.7.7 Lignin structure, 202
- References, 203

- 8 Conversion of sugarcane carbohydrates into platform chemicals, 207**
Darryn W. Rackemann, Zhanying Zhang and William O.S. Doherty
 - 8.1 Introduction, 207
 - 8.1.1 Bagasse, 208
 - 8.1.2 Biorefining, 208
 - 8.2 Platform chemicals, 210
 - 8.2.1 Furans, 212
 - 8.2.2 Furfural, 212
 - 8.2.3 HMF, 214
 - 8.3 Organic acids, 214
 - 8.3.1 Levulinic acid, 214
 - 8.3.2 Formic acid, 218
 - 8.4 Value of potential hydrolysis products, 218
 - 8.5 Current technology for manufacture of furans and levulinic acid, 220
 - 8.6 Technology improvements, 222
 - 8.7 Catalysts, 223
 - 8.7.1 Homogeneous catalysts, 223
 - 8.7.2 Heterogeneous catalysts, 224
 - 8.7.3 Levulinic acid, 224
 - 8.8 Solvolysis, 226
 - 8.9 Other product chemicals, 228
 - 8.9.1 Esters, 228
 - 8.9.2 Ketals, 228
 - 8.9.3 Chloromethylfurfural, 229
 - 8.9.4 GVL, 229
 - 8.10 Concluding remarks, 230
 - References, 231

- 9 Cogeneration of sugarcane bagasse for renewable energy production, 237**
Anthony P. Mann
 - 9.1 Introduction, 237
 - 9.2 Background, 238
 - 9.3 Sugar factory processes without large-scale cogeneration, 243

- 9.4 Sugar factory processes with large-scale cogeneration, 249
 - 9.4.1 Reducing LP steam heating requirements, 249
 - 9.4.2 Reducing boiler station losses, 251
 - 9.4.3 Increasing power generation efficiency, 253
 - 9.4.4 A sugar factory cogeneration steam cycle, 254
- 9.5 Conclusions, 256
- References, 257

10 Pulp and paper production from sugarcane bagasse, 259

Thomas J. Rainey and Geoff Covey

- 10.1 Background, 259
- 10.2 History of bagasse in the pulp and paper industry, 260
- 10.3 Depithing, 260
 - 10.3.1 The need for depithing, 260
 - 10.3.2 Depithing operation, 262
 - 10.3.3 Character of pith, depithed bagasse, and whole bagasse, 264
 - 10.3.4 Combustion of pith, 264
- 10.4 Storage of bagasse for papermaking, 266
- 10.5 Chemical pulping and bleaching of bagasse, 268
 - 10.5.1 Digestion, 268
 - 10.5.2 Black liquor, 269
 - 10.5.3 Bleaching, 270
- 10.6 Mechanical and chemi-mechanical pulping, 271
- 10.7 Papermaking, 272
 - 10.7.1 Fiber morphology, 272
 - 10.7.2 Suitability of bagasse for various paper grades, 273
 - 10.7.3 Physical properties, 274
 - 10.7.4 Effect of pith on paper production, 275
- 10.8 Alternate uses of bagasse pulp, 276
- References, 277

11 Sugarcane-derived animal feed, 281

Mark D. Harrison

- 11.1 Introduction, 281
 - 11.1.1 The anatomy of the sugarcane plant, 282
 - 11.1.2 Sugarcane production, processing, and sugar refining, 282
 - 11.1.3 Scope of the chapter, 284
- 11.2 Crop residues and processing products, 285
 - 11.2.1 Whole sugarcane, 285
 - 11.2.2 Tops and trash, 286
 - 11.2.3 Bagasse, 288
 - 11.2.4 Molasses, 288
 - 11.2.5 Sugarcane juice, 290

- 11.3 Processing sugarcane residues to enhance their value in animal feed, 290
 - 11.3.1 Ensilage/microbial conditioning, 291
 - 11.3.2 Chemical conditioning, 293
 - 11.3.3 Physical processing (baling, pelletization, depithing), 296
 - 11.3.4 Pretreatment, 296
- 11.4 Conclusions, 300
- References, 300

Part III Systems and sustainability

- 12** Integrated first- and second-generation processes for bioethanol production from sugarcane, 313
Marina O. de Souza Dias, Otávio Cavalett, Rubens M. Filho and Antonio Bonomi
 - 12.1 Introduction, 313
 - 12.2 Process descriptions, 315
 - 12.2.1 First-generation ethanol production, 315
 - 12.2.2 Second-generation ethanol production, 317
 - 12.2.3 Cogeneration in integrated first- and second-generation ethanol production from sugarcane, 320
 - 12.2.4 Some aspects of the process integration, 321
 - 12.3 Economic aspects of first- and second-generation ethanol production, 323
 - 12.4 Environmental aspects of first- and second-generation ethanol production, 325
 - 12.5 Final remarks, 328
 - References, 328
- 13** Greenhouse gas abatement from sugarcane bioenergy, biofuels, and biomaterials, 333
Marguerite A. Renouf
 - 13.1 Introduction, 333
 - 13.2 Life cycle assessment (LCA) of sugarcane systems, 335
 - 13.2.1 Overview of LCA and carbon footprinting, 335
 - 13.2.2 Past LCA and carbon footprint studies of sugarcane bioproducts, 337
 - 13.3 Greenhouse gas/carbon footprint profile of sugarcane bioproducts, 339
 - 13.3.1 Land use change, 339
 - 13.3.2 Sugarcane production, 340
 - 13.3.3 Sugarcane biorefining, 342
 - 13.3.4 Downstream phases, 343
 - 13.4 Greenhouse gas (GHG) abatement from sugarcane products, 343
 - 13.4.1 Comparing sugarcane products with fossil fuel products, 343

- 13.4.2 Influence of land-use change, 344
- 13.4.3 Comparing sugarcane with other biomass feedstock, 345
- 13.4.4 Attributes for GHG abatement, 348
- 13.5 Environmental trade-offs, 349
 - 13.5.1 Land use and associated environmental services, 349
 - 13.5.2 Water use, 350
 - 13.5.3 Water quality, 350
 - 13.5.4 Phosphorus depletion, 351
 - 13.5.5 Balancing the GHG abatement benefits with the environmental trade-offs, 351
- 13.6 Production pathways that optimize GHG abatement, 352
 - 13.6.1 Production basis (dedicated vs. coproduction), 352
 - 13.6.2 Product outputs, 352
 - 13.6.3 Land used, 354
- 13.7 Opportunities for further optimizing GHG abatement, 354
 - 13.7.1 Ecoefficient sugarcane growing, 354
 - 13.7.2 Utilization of harvest residues, 355
 - 13.7.3 New sugarcane varieties, 355
- 13.8 Summary, 355
- References, 356

- 14 Environmental sustainability assessment of sugarcane bioenergy, 363**
Shabbir H. Gheewala, Sébastien Bonnet and Thapat Silalertruksa
 - 14.1 Bioenergy and the sustainability challenge, 363
 - 14.2 Prospect of sugarcane bioenergy, 364
 - 14.3 Environmental sustainability assessment tools, 365
 - 14.4 Environmental sustainability assessment of sugarcane bioenergy: Case of Thailand, 366
 - 14.4.1 Background and policy context, 366
 - 14.4.2 Sugarcane farming and production system, 366
 - 14.4.3 Sugarcane farming and harvesting, 367
 - 14.4.4 Sugarcane milling, 367
 - 14.4.5 Ethanol conversion, 368
 - 14.4.6 Transport, 368
 - 14.5 Net energy balance and net energy ratio, 369
 - 14.6 Life cycle environmental impacts, 369
 - 14.7 Key environmental considerations for promoting sugarcane bioenergy, 372
- References, 376

- Index, 379

- 13.4.2 Influence of land-use change, 344
- 13.4.3 Comparing sugarcane with other biomass feedstock, 345
- 13.4.4 Attributes for GHG abatement, 348
- 13.5 Environmental trade-offs, 349
 - 13.5.1 Land use and associated environmental services, 349
 - 13.5.2 Water use, 350
 - 13.5.3 Water quality, 350
 - 13.5.4 Phosphorus depletion, 351
 - 13.5.5 Balancing the GHG abatement benefits with the environmental trade-offs, 351
- 13.6 Production pathways that optimize GHG abatement, 352
 - 13.6.1 Production basis (dedicated vs. coproduction), 352
 - 13.6.2 Product outputs, 352
 - 13.6.3 Land used, 354
- 13.7 Opportunities for further optimizing GHG abatement, 354
 - 13.7.1 Ecoefficient sugarcane growing, 354
 - 13.7.2 Utilization of harvest residues, 355
 - 13.7.3 New sugarcane varieties, 355
- 13.8 Summary, 355
- References, 356

- 14 Environmental sustainability assessment of sugarcane bioenergy, 363**
Shabbir H. Gheewala, Sébastien Bonnet and Thapat Silalertruksa
 - 14.1 Bioenergy and the sustainability challenge, 363
 - 14.2 Prospect of sugarcane bioenergy, 364
 - 14.3 Environmental sustainability assessment tools, 365
 - 14.4 Environmental sustainability assessment of sugarcane bioenergy: Case of Thailand, 366
 - 14.4.1 Background and policy context, 366
 - 14.4.2 Sugarcane farming and production system, 366
 - 14.4.3 Sugarcane farming and harvesting, 367
 - 14.4.4 Sugarcane milling, 367
 - 14.4.5 Ethanol conversion, 368
 - 14.4.6 Transport, 368
 - 14.5 Net energy balance and net energy ratio, 369
 - 14.6 Life cycle environmental impacts, 369
 - 14.7 Key environmental considerations for promoting sugarcane bioenergy, 372
- References, 376

- Index, 379