

Contents

Preface	xvii
1 Gellan as Novel Pharmaceutical Excipient	1
<i>Priya Vashisth, Harmeet Singh, Parul A. Pruthi and Vikas Pruthi</i>	
1.1 Introduction	1
1.2 Structural Properties of Gellan	2
1.3 Physiochemical Properties of Gellan	4
1.3.1 Gelling Features and Texture Properties	4
1.3.2 Rheology	6
1.3.3 Biosafety and Toxicological Studies	6
1.4 Pharmaceutical Applications of Gellan	7
1.4.1 Gellan-Based Pharmaceutical Formulations	7
1.4.1.1 Gel Formulations	7
1.4.1.2 Mucoadhesive Formulations	7
1.4.1.3 Granulating/Adhesive Agents and Tablet Binders	8
1.4.1.4 Controlled Release Dosage Form	8
1.4.1.5 Microspheres and Microcapsules	8
1.4.1.6 Gellan Beads	9
1.4.1.7 Gellan Films	10
1.4.1.8 Gellan Nanohydrogels	10
1.4.1.9 Gellan Nanoparticles	10
1.4.2 Role of Gellan Excipients in Drug Delivery and Wound Healing	11
1.4.2.1 Ophthalmic Drug Delivery	11
1.4.2.2 Nasal Drug Delivery	12
1.4.2.3 Oral Drug Delivery	12
1.4.2.4 Buccal Drug Delivery	13
1.4.2.5 Periodontal Drug Delivery	13
1.4.2.6 Gastrointestinal Drug Delivery	13
1.4.2.7 Vaginal Drug Delivery	14
1.4.2.8 Colon Drug Delivery	15
1.4.2.9 Wound Healing	15
1.5 Conclusion and Future Perspectives	16
References	16

2 Application of Polymer Combinations in Extended Release Hydrophilic Matrices	23
<i>Ali Nokhodchi, Dasha Palmer, Kofi Asare-Addo, Marina Levina and Ali Rajabi-Siahboomi</i>	
2.1 Extended Release Matrices	23
2.1.1 Polymers Used in ER Matrices	24
2.1.2 Water-Soluble (Hydrophilic) Polymers	24
2.1.3 Water-Insoluble Polymers	24
2.1.4 Fatty Acids/Alcohols/Waxes	25
2.2 Polymer Combinations Used in ER matrices	25
2.2.1 Compatibility and Miscibility of Polymers	25
2.2.2 Combination of Non-Ionic Polymers	26
2.3 Combination of Non-Ionic with Ionic Polymers	27
2.4 Combinations of Ionic Polymers	27
2.5 Other Polymer Combinations	28
2.6 Effect of Dissolution Method (Media) on Drug Release from ER Matrices Containing Polymer Combinations	28
2.7 Main Mechanisms of Drug-Polymer and/or Polymer-Polymer Interaction in ER Formulations	30
2.8 Summary and Conclusions	39
References	40
3 Reagents for the Covalent Attachment of mPEG to Peptides and Proteins	51
<i>Marianela González, Victoria A. Vaillard and Santiago E. Vaillard</i>	
3.1 Introduction	51
3.2 General Considerations about PEG Reagents and PEGylation Reactions	54
3.3 PEGylation of Amino Groups	57
3.3.1 PEGylation by Urethane Linkage Formation	58
3.3.2 PEGylation by Amide Linkage Formation	60
3.3.3 PEGylation by Reductive Amination	65
3.3.4 PEGylation by Alkylation	67
3.4 PEGylation of Thiol Groups	69
3.5 Reversible PEGylation	73
3.6 Enzymatic PEGylation	76
3.7 PEGylation of Carbohydrates Residues	77
3.8 PEGylation by Click Chemistry	77
3.9 Other PEGylations	79
3.9.1 PEGylation at Arginine	79
3.9.2 PEGylation at Tyrosine	79
3.9.3 PEGylation at Histidine	80
3.9.4 PEGylation at Carboxylic Groups	81
3.9.5 PEGylation with mPEG Isothiocyanate	81
3.10 Actual Trends	81
3.11 Conclusions	82
Acknowledgements	83
References	83

4 Critical Points and Phase Transitions in Polymeric Matrices for Controlled Drug Release	101
<i>A. Aguilar-de-Leyva, M.D. Campiñez, M. Casas and I. Caraballo</i>	
4.1 Introduction	101
4.2 Matrix Systems	102
4.2.1 Inert Matrices	103
4.2.2 Hydrophilic Matrices	104
4.2.3 Lipidic Matrices	104
4.3 Polymers Employed in the Manufacture of Matrix Systems	104
4.3.1 Polymers for Inert Matrices	105
4.3.2 Polymers for Hydrophilic Matrices	107
4.4 Polymer Properties Affecting Drug Release from Matrix Systems	111
4.4.1 Mechanical Properties	111
4.4.2 Particle Size	112
4.4.3 Viscosity	112
4.4.4 Molecular Size	113
4.4.5 Substituent Content	113
4.5 Percolation Theory	113
4.5.1 Basic Concepts	114
4.5.2 Fundamental Equation	116
4.5.3 Percolation Models	116
4.5.4 Application of the Percolation Theory to the Design of Controlled Release System	117
4.6 Critical Points in Matrix Systems	117
4.6.1 Critical Points in Inert Matrices	117
4.6.2 Critical Points in Hydrophilic Matrices	123
4.6.3 Critical Points in Multiparticulate Matrix Systems	128
4.6.4 Critical Points in Matrix Tablets Prepared by Ultrasound-Assisted Compression	129
4.7 Case-Study: Characterization of a New Biodegradable Polyurethane PU (TEG-HMDI) as Matrix-Forming Excipient for Controlled Drug Delivery	130
4.7.1 Rheological Studies	130
4.7.2 Preparation of Matrix Tablets	131
4.7.3 Drug Release Studies	131
4.7.4 Estimation of Excipient Percolation Threshold	131
4.8 Conclusions and Future Perspectives	133
References	135
5 Polymeric Systems in Quick Dissolving Novel Films	143
<i>Prithviraj Chakraborty, Amitava Ghosh and Debarupa D. Chakraborty</i>	
5.1 Introduction	143
5.1.1 Drug Delivery Systems for Intraoral Application	144
5.1.2 Quick Dissolving Novel Pharmaceutical Films/Wafer Dosage Form	144
5.1.3 Buccoadhesive Wafer Dosage Form Advantages over Conventional Oral Dosage Forms	146

5.2	Preparation Methods of Novel Quick Dissolving Films	146
5.2.1	Hot-Melt Extrusion Process	146
5.2.2	Solvent Casting Method	147
5.3	Polymers and Blends for Utilization in Different Quick Dissolving Films	147
5.4	Polymers in Novel Quick Dissolving Films	149
5.4.1	Hydroxypropyl Cellulose (Cellulose, 2-hydroxypropyl ether)	149
5.4.2	Hydroxypropyl Methyl Cellulose (Cellulose Hydroxypropyl Methyl Ether)	150
5.4.3	Pullulan	151
5.4.4	Carboxymethyl Cellulose	152
5.4.5	Polyvinyl Pyrrolidone	153
5.4.6	Sodium Alginate	154
5.4.7	Polymethacrylates	155
5.4.8	Microcrystalline Cellulose	157
5.5	Role of Plasticizers in Novel Quick Dissolving Film	158
5.6	Characterization Procedure Listed in the Literature for Fast Dissolving Films	159
5.6.1	Thickness and Weight Variation	159
5.6.2	Film Flexibility	160
5.6.3	Tensile Strength	160
5.6.4	Tear Resistance	160
5.6.5	Young's Modulus	161
5.6.6	Folding Endurance	161
5.6.7	ATR-FTIR Spectroscopy	161
5.6.8	Thermal Analysis and Differential Scanning Calorimetry (DSC)	161
5.6.9	Disintegration Test	161
5.6.10	X-ray Diffraction Study or Crystallinity Study of Films	162
5.6.11	Morphological Study	162
5.7	Conclusion and Future Perspectives	163
	References	163
6	Biomaterial Design for Human ESCs and iPSCs on Feeder-Free Culture toward Pharmaceutical Usage of Stem Cells	167
	<i>Akon Higuchi, S. Suresh Kumar, Murugan A. Munusamy and Abdullah A Alarfaj</i>	
6.1	Introduction	167
6.2	Analysis of the Pluripotency of hPSCs	173
6.3	Physical Cues of Biomaterials that Guide Maintenance of PSC Pluripotency	174
6.3.1	Effect of Biomaterial Elasticity on hPSC Culture	176
6.3.2	Effect of Biomaterial Hydrophilicity on hPSC Culture	177
6.4	Two-Dimensional (2D) Culture of hPSCs on Biomaterials	180
6.4.1	hPSC Culture on ECM-Immobilized Surfaces in 2D	180
6.4.2	hPSC Culture on Oligopeptide-Immobilized Surfaces in 2D	184
6.4.3	hPSC Culture on Recombinant E-cadherin Substratum in 2D	186

6.4.4	hPSC Culture on Polysaccharide-Immobilized Surfaces in 2D	187
6.4.5	hPSC Culture on Synthetic Surfaces in 2D	189
6.5	Three-Dimensional (3D) Culture of hPSCs on Biomaterials	193
6.5.1	3D Culture of hPSCs on Microcarriers	193
6.5.2	3D Culture of hPSCs Entrapped in Hydrogels (Microcapsules)	200
6.6	hPSC Culture on PDL-Coated Dishes with the Addition of Specific Small Molecules	205
6.7	Conclusion and Future Perspective	205
	Acknowledgements	206
	References	206
7	New Perspectives on Herbal Nanomedicine	215
	<i>Sourabh Jain, Aakanchha Jain, Vikas Jain and Dharmveer Kohli</i>	
7.1	Introduction	215
7.1.1	Novel Herbal Drug Formulations	216
7.2	Phytosomes	217
7.3	Liposomes	218
7.3.1	Classification of Liposomes by Work and Mode of Delivery	219
7.3.2	Classification of Liposomes by Size and Range of Bilayers	219
7.4	Nanoparticles	220
7.4.1	Merits of Nanoparticles as Drug Delivery Systems	222
7.5	Nanoemulsions/Microemulsions	222
7.5.1	Merits of Nanoemulsions	222
7.6	Microspheres	223
7.6.1	Classifications of Polymers Used in Microspheres	224
7.7	Microcapsules	225
7.7.1	Morphological Features of Microcapsules	225
7.8	Nanocrystals	225
7.8.1	Methods for Formulation of Nanocrystals	226
7.9	Ethosomes	227
7.10	Transfersomes	228
7.10.1	Relevant Characteristics of Transfersomes	228
7.10.2	Transfersomes as Herbal Formulation	229
7.10.3	Limitations of Transfersomes	229
7.11	Nanoscale Herbal Decoction	230
7.12	Natural Polymers in Nanodrug Delivery	230
7.13	Future Prospects	231
	References	232
8	Endogenous Polymers as Biomaterials for Nanoparticulate Gene Therapy	237
	<i>Giovanni K. Zorzi, Begoña Seijo and Alejandro Sanchez</i>	
8.1	Introduction	237
8.2	Polymeric Nanoparticles in Gene Therapy: Main Characteristics of Currently Proposed Nanosystems Based on Endogenous Polymers	239
8.2.1	Strategies Based on Use of Endogenous Polymers as Biomaterials	239

8.2.2	Physicochemical Characteristics of Nanosystems Based on Endogenous Polymers	246
8.2.3	Nanoparticle Internalization	249
8.3	Specific Features of Endogenous Polymers that Can Open New Prospects in Nanoparticulate Gene Therapy	250
8.3.1	Proteins	250
8.3.2	Carbohydrates	255
8.4	Conclusion and Future Perspective	258
	References	259
9.	Molecularly Imprinted Polymers as Biomimetic Molecules: Synthesis and their Pharmaceutical Applications	267
	<i>Mohammad Reza Ganjali, Morteza Rezapour, Farnoush Faribod and Parviz Norouzi1</i>	
9.1	Introduction	267
9.2	Preparation of Molecularly Imprinted Polymers (MIPs)	268
9.2.1	Reaction Components	268
9.2.2	Imprinting Modes	271
9.2.3	Polymerization	274
9.2.4	Physical Forms of MIPs	275
9.2.5	Removing the Template	276
9.3	Applications of Imprinted Polymers	276
9.3.1	Imprinted Polymers in Drug Delivery	276
9.3.2	Imprinted Polymers in Separation of Pharmaceuticals	286
9.3.3	MIPs in Devices for Sensing Pharmaceutical Species	289
	References	300
10	Biobased Pharmaceutical Polymer Nanocomposite: Synthesis, Chemistry and Antifungal Study	327
	<i>Fahmina Zafar, Eram Sharmin, Sheikh Shreaz, Hina Zafar, Muzaffar Ul Hassan Mir, Jawad M. Behbehani and Sharif Ahmad</i>	
10.1	Introduction	328
10.1.1	Vegetable Seed Oils(VO)	329
10.1.2	Polyesteramides (PEAs)	331
10.1.3	Zinc Oxide Nanoparticles	332
10.1.4	Green Chemistry	333
10.1.5	Microwave-Assisted Reactions	334
10.2	Experimental Protocol	335
10.2.1	Procedure for Transformation of RCO to N,N-bis(2 Hydroxyethyl)Ricinolamide (MicHERA)	335
10.2.2	Procedure for the Transformation of MicHERA to PERA/Nano-ZnO Bionanocomposite	336
10.2.3	Procedure for Transformation of MicHERA to PERA	336

10.2.4	Fungal Isolates Used and Minimum Inhibitory Concentration (MIC_{90}) Determination	336
10.2.5	Disc Diffusion Halo Assays	337
10.2.6	Growth Curve Studies	337
10.2.7	Proton Efflux Measurements	337
10.2.8	Measurement of Intracellular pH (pHi)	338
10.3	Results	338
10.3.1	Synthesis	338
10.3.2	Minimal Inhibitory Concentration	341
10.3.3	Disc Diffusion	341
10.3.4	Growth Studies (Turbidometric Measurement)	342
10.3.5	Proton Efflux Measurements	342
10.3.6	Measurement of Intracellular pH	344
10.4	Discussion	344
10.5	Conclusion	346
	Acknowledgements	347
	References	347
11.	Improving Matters of the Heart: The Use of Select Pharmaceutical Polymers in Cardiovascular Intervention	351
	<i>Ashim Malhotra</i>	
11.1	Pharmaceutical Polymers Used for Drug-Eluting Stents	351
11.1.1	Introduction and Historical Perspective	351
11.1.2	Polymers Used in Drug-Eluting Stents	352
11.1.3	Polymers Used for Paclitaxel Stents	353
11.2	Pharmaceutical Polymers Used in Cardiovascular Prostheses	354
11.2.1	Introduction and Historical Perspective	354
11.2.2	Factors Affecting Selection of Polymer	356
11.2.3	Specific Polymers Used in Cardiovascular Applications	356
11.3	Pharmaceutical Polymers Used for Gene Therapy	359
11.3.1	Introduction to Cardiovascular Gene Therapy	359
11.3.2	Cardiovascular Gene Delivery Systems	359
11.3.3	Ideal Polymeric Characteristics for Use in Gene Therapy	360
11.3.4	Polymers Used in the Design of Cardiovascular Vectors	360
11.3.5	Ultrasound-Targeted Microbubble Destruction (UTMD) for Cardiovascular Gene Therapy	360
11.4	Pharmaceutical Polymers Used in Tissue Engineering	361
11.5	Injectable Biopolymers	363
11.5.1	Introduction and Historical Perspective	363
11.5.2	Cardiac Restructuring	363
11.5.3	Select Biopolymer Agents Used as Bioinjectables in Cardiovascular Intervention	364
11.6	Vascular Restructuring	365
11.7	Conclusions and Future Directions	365
	Acknowledgement	366
	References	366

12	Polymeric Prosthetic Systems for Site-Specific Drug Administration: Physical and Chemical Properties	369
	<i>Marián Parisi, Verónica E. Manzano, Sabrina Flor, María H. Lissarrague, Laura Ribba1, Silvia Lucangioli, Norma B. D'Accorso and Silvia Goyanes</i>	
12.1	Introduction	370
12.2	Polymers Used in Medical Devices: General Features	373
12.3	Risks Associated with Surgical Procedures	374
12.4	Applications in Bone Tissue Engineering	375
12.4.1	Surgical Applications of PMMA	376
12.4.2	Antibiotic Treatment Commonly Used in Orthopedic Procedure Involving PMMA Bone Cement	383
12.4.3	General Drawbacks of Antibiotic-Loaded Bone Cements	384
12.4.4	PMMA Modified Materials	386
12.5	Applications in Cardiovascular Tissue Engineering	388
12.5.1	Cardiovascular Devices	391
12.5.2	Drug Treatments Commonly Used in Cardiovascular Devices	396
12.5.3	Polyurethane Modified Materials	398
12.6	Future Perspectives	400
12.7	Conclusions	403
	Acknowledgements	404
	References	404
13	Prospects of Guar Gum and Its Derivatives as Biomaterials	413
	<i>D. Sathya Seeli and M. Prabaharan</i>	
13.1	Introduction	413
13.2	Developments of Guar Gum and Its Derivatives	414
13.2.1	Drug Delivery Systems (DDSs)	414
13.2.2	Tissue Engineering Scaffolds	423
13.2.3	Wound Healing Materials	425
13.2.4	Biosensors	425
13.2.5	Antimicrobial Agents	428
13.3	Conclusions	429
	References	429
14	Polymers for Peptide/Protein Drug Delivery	433
	<i>M.T. Chevalier, J.S. Gonzalez and V.A. Alvarez</i>	
14.1	Biodegradable Polymers	433
14.2	Why Protein and Peptide Encapsulation?	434
14.3	Surface Functionalization	435
14.4	Poly Lactic Acid (PLA)	437
14.4.1	Polymer Structure and Main Characteristics	437
14.4.2	Encapsulation of Peptides/Proteins in PLA	438
14.5	Poly(lactic-co-glycolic acid) (PLGA)	440
14.5.1	Polymer Structure and Main Characteristics	440
14.5.2	Encapsulation of Peptides/Proteins in PLGA	441

14.6	Chitosan	446
14.6.1	Chitosan Structure and Main Characteristics	446
14.6.2	Encapsulation of Peptides/Proteins	447
14.6.3	Peptides and Proteins Encapsulated in Chitosan	448
14.7	Final Comments and Future Perspectives	450
	References	450
15	Eco-Friendly Grafted Polysaccharides for Pharmaceutical Formulation: Structure and Chemistry	457
	<i>Sumit Mishra, Kartick Prasad Dey and Srijita Bharti</i>	
15.1	Introduction	457
15.1.1	Targeted Drug Delivery	458
15.1.2	Controlled Drug Delivery	458
15.1.3	Current Status of Controlled Drug Release Technologies	459
15.1.4	Pharmaceutical Formulation	460
15.1.5	Stages and Timeline	460
15.1.6	Types of Pharmaceutical Formulation	460
15.2	Polysaccharides	462
15.2.1	Chemistry of Polysaccharides	463
15.2.2	Grafted Polysaccharides	463
15.2.3	Drug Delivery System by Grafted Polysaccharides	464
15.2.4	Concept of Drug Delivery Matrix	465
15.2.5	Concept of Inter-Polymer Network (IPN)	466
15.2.6	'In-Vitro' Drug Release Study	467
15.2.7	Mechanism of Drug Release	468
15.3	Conclusions	471
	References	471
16	Pharmaceutical Natural Polymers: Structure and Chemistry	477
	<i>George Dan Mogoșanu and Alexandru Mihai Grumezescu</i>	
16.1	Introduction	477
16.2	Natural Polymers	478
16.2.1	Polysaccharides	478
16.2.2	Peptides and Proteins	494
16.2.3	Resins and Related Compounds	497
	Acknowledgments	498
	References	498
	Index	521
	Information about the Series	529