

Contents

Preface	ix
1 Introduction.....	1
1.1 The bridges of understanding.....	1
Further reading.....	3
2 Chemical structure of polymers.....	5
2.1 The method of synthesis	5
2.2 Condensation polymers.....	5
2.3 Addition polymers	6
2.4 Stereochemistry in polymer molecules	8
2.5 Geometric isomerism.....	10
2.6 Monomer functionality.....	10
2.7 Copolymers and blends.....	12
2.8 Local organisation of polymer chains.....	13
2.9 Molar mass distribution.....	15
2.10 Summary	16
Further reading.....	17
3 Nature of molecular motion in polymers.....	19
3.1 Molecular motions in flexible polymers.....	19
3.2 Internal rotation in small molecules.....	19
3.3 The interactions between molecules	20
3.4 Internal rotation in small and larger molecules.....	21
3.5 Rotational isomeric state model of polymers.....	27
3.6 Dynamics of conformational change.....	29
3.7 The coupled nature of internal rotations in polymers.....	31
3.8 The size of the moving element	32
3.9 Libration.....	33
3.10 Normal modes of motion.....	33
3.11 Reptation in a tube	35
Further reading.....	37
4 The glass to rubber transition	39
4.1 The physical properties of interest	39
4.2 Mechanical properties	40
4.3 Four temperature regions of mechanical behaviour.....	41
4.4 Working temperature range for a polymer	43
4.5 The transition region	43
4.6 Temperature and energy.....	44
4.7 Electrostatic forces opposing rotation.....	44
4.8 The effect of chemical composition.....	45

4.9	The effect of time	48
4.10	The equivalence of time and temperature.....	51
4.11	Non-Arrhenius activation	53
4.12	Free volume and activation energy for movement in the glass.....	55
4.13	Volume and time.....	56
4.14	Other glass transition theories	57
4.15	Time, rate and frequency.....	58
4.16	The Williams–Landel–Ferry equation	59
4.17	Softening and melting	61
4.18	Summary	62
	Further reading.....	62
5	The glass state	63
5.1	Polymer glasses.....	63
5.2	Low-temperature molecular motion.....	63
5.3	The effect of libration and low-temperature motions	64
5.4	The effect of time on the α - and β -transitions.....	65
5.5	Lower temperature transitions	66
5.6	A glass may have different entropy characteristics	67
	Further reading.....	69
6	Crystallinity	71
6.1	Ordered structure in crystalline polymers	71
6.2	Requirements for the formation of ordered structures	71
6.3	Polymer crystal structures	73
6.4	Morphology of crystalline polymers	75
6.5	Mechanisms of crystallisation.....	79
6.6	Temperature and growth rate	82
6.7	Melting of crystalline polymers	83
	Further reading.....	84
7	The rubber state	85
7.1	Large deformations	85
7.2	The elastic restoring force	85
7.3	Energy absorption.....	90
7.4	Tyre technology	93
7.5	Cross-linked rubber	95
7.6	Two other significant elastomeric materials.....	98
7.6.1	Polyurethanes	98
7.6.2	Silicone elastomers.....	101
7.7	Creep.....	103
	Further reading.....	104
8	The liquid/melt state	105
8.1	Viscosity	105
8.2	Effect of shear rate.....	109

8.3	Viscoelasticity in technology	111
8.3.1	Die swell	111
8.3.2	Melt fracture.....	111
8.3.3	Viscostatic lubricating oils.....	112
8.3.4	Shear thickening and thinning effects.....	113
	Further reading.....	114
9	Drawing and fracture	115
9.1	Introduction	115
9.2	Tensile testing	116
9.3	Impact testing	116
9.4	Drawing of amorphous polymers	117
9.5	Drawing of crystalline polymers	119
9.6	High modulus fibres.....	121
9.7	Failure in amorphous plastics: brittle and ductile fracture	123
9.8	Cracking and crazing	126
	Further reading.....	128
10	Dynamic mechanical relaxation	129
10.1	Periodic stress and strain.....	129
10.2	Real and imaginary strain.....	129
10.3	Periodic shear: dynamic viscosity.....	131
10.4	Definition of relaxation.....	132
10.5	Relaxation as a function of frequency.....	135
10.6	Frequency dependent compliance	136
10.7	Stress/strain relaxation and retardation.....	137
10.8	Relaxation and resonance	138
10.9	Non-ideal dynamic mechanical relaxation behaviour.....	140
	Further reading.....	142
11	Acoustic (ultrasonic) relaxation	143
11.1	The sound wave.....	143
11.2	Measured sound parameters	145
11.3	Two-state energy model.....	146
11.4	Polymer internal rotation	147
11.5	High intensity ultrasonic waves in liquids	149
11.6	Acoustic modes in solids	150
	Further reading.....	150
12	Dielectric relaxation	151
12.1	Band structure of insulators, semiconductors and metals	151
12.2	Complex permittivity	153
12.3	Time and frequency dependences	155
12.4	Dipole orientation polarisation.....	156
12.5	Interfacial polarisation.....	159
12.6	Carbon fibre composites – stealth aircraft	159

12.7	Electronic baseboards	160
12.8	Collisional polarisation.....	162
	Further reading.....	163
13	Photophysics of polymers (excited state relaxation)	165
13.1	Single molecule processes and relaxation	165
13.2	Two-molecule systems: exciplexes and excimers	167
13.3	Resonance (Förster) energy transfer.....	169
13.4	Exciton movement in polymer chains	170
13.5	Excimer trapping.....	172
13.6	Delocalised (Frenkel) excitons.....	172
13.7	Photochromism and molecular motion	173
	Further reading.....	175
14	Conductivity in polymer systems	177
14.1	Introduction	177
14.2	Electronic conduction in polyacetylene.....	177
14.3	Electronic conduction in carbon nano tubes	180
14.4	Polypyrrole, polythiophene and related systems	181
14.5	Temperature sensitive electrical conductivity.....	183
14.6	Polymeric electrolytes.....	184
	Further reading.....	186
15	Diffusion in polymers	187
15.1	Introduction	187
15.2	Mechanism of diffusion	188
15.3	Permeation of permanent gases.....	188
15.4	Permeation of condensable vapours	190
15.5	Some technological applications	190
15.6	Diffusion controlled homogeneous polymer reactions	193
15.7	Diffusion control in polymerisation	193
15.8	Diffusion controlled free radical termination	194
15.9	Diffusion controlled propagation.....	195
15.10	Polymer chain end excited state quenching.....	196
	Further reading.....	197
16	Methods of studying molecular motion	199
16.1	Introduction	199
16.2	Spectroscopic methods	200
16.3	Kinetics of conformational change.....	202
16.4	Studies in solutions and gels.....	203
16.5	Studies in solids and melts.....	204
	Further reading	207
Index		209