

CONTENTS

Chapter 1. Introduction	1
I. Present State of Electrochemistry,	1
II. Nomenclature and Classes of Electrochemical Methodology,	2
III. Sign and Graphical Conventions,	3
IV. Utilization of Electrochemistry for Chemical Characterization,	7
Chapter 2. Indicator Electrodes	11
I. Introduction,	11
A. Measurement of Electrode Potentials,	11
B. Junction Potentials,	11
C. The Problem of a Solvent Independent EMF Scale,	14
D. Calculation and Indirect Measurement of Junction Potentials,	17
E. Cells with Liquid Junctions and Elimination of Junction Potentials,	23
F. Some Practical Considerations in the Use of Salt Bridges,	31
II. Reference Electrodes,	34
A. Properties of the Ideal Reference Electrode,	34
B. Reference Electrodes for Use in Aqueous Solutions,	35
C. Reference Electrodes for Use in Aprotic Solvents,	53
D. Reference Electrodes for Use in Nonpolar Solvents,	57
E. Reference Electrodes in Fused Salt Systems,	58

III.	Voltammetric Indicator Electrodes,	60
A.	<i>Electrode Materials and Their Electrochemical Behavior,</i>	60
B.	<i>Measurement of Electrode Area,</i>	74
C.	<i>Electrode Pretreatment,</i>	78
D.	<i>Construction and Mass Transport Properties of Voltammetric Electrodes,</i>	79
E.	<i>Optically Transparent Electrodes,</i>	96
IV.	Potentiometric Indicator Electrodes,	101
A.	<i>Mercury Indicator Electrodes,</i>	101
B.	<i>Solid Indicator Electrodes,</i>	102
C.	<i>Specific Ion Electrodes,</i>	103

Chapter 3. Electrochemical Cells

117

I.	Introduction,	117
A.	<i>General Requirements,</i>	117
B.	<i>Materials for the Construction of Cells and Electrodes,</i>	126
C.	<i>The Maintenance of an Inert Atmosphere,</i>	133
II.	Description of General-Purpose Cells,	142
A.	<i>Cells for Voltammetry and Polarography,</i>	142
B.	<i>Cells for Coulometry and Preparative Electrochemistry,</i>	147
C.	<i>Control of Temperature and Pressure,</i>	153
D.	<i>Cells for Conductivity,</i>	155
E.	<i>Micro Cells,</i>	157
F.	<i>Flow and Circulation Cells,</i>	158
G.	<i>Cells for Spectroelectrochemistry,</i>	160

Chapter 4. Solvents and Electrolytes

167

I.	Introduction,	167
A.	<i>The Physical Chemical Properties of Solvents and Their Relevance to Electrochemistry,</i>	167
B.	<i>Classification of Solvents,</i>	177
II.	Role of the Solvent-Supporting Electrolyte System in Electrochemistry,	184

III.	The Role of the Supporting Electrolyte,	187
A.	<i>Introduction</i> ,	187
B.	<i>Control of Cell Resistance</i> ,	187
C.	<i>Control of Solution Acidity</i> ,	191
D.	<i>Complex Formation</i>	194
E.	<i>Ion-Pairing and Double-Layer Effects</i>	194
F.	<i>Micellar Aggregates</i>	196
IV.	Electrochemical Properties of Water and Selected Organic Solvents,	196
A.	<i>Water</i> ,	196
B.	<i>Nonaqueous Solvents</i> ,	203
V.	Preparation and Purification of Supporting Electrolytes,	210

Chapter 5. Instrumentation 217

I.	Measurement Instrumentation,	217
A.	<i>Introduction</i> ,	217
B.	<i>Voltage Measurements</i> ,	24
C.	<i>Current Measurements</i> ,	224
D.	<i>Bridge Measurements of Resistance, Capacitance, and Inductance</i> ,	224
E.	<i>Recording Devices</i> ,	231
II.	Control Instrumentation,	236
A.	<i>Introduction to the Use of Operational Amplifiers in Measurement and Control</i> ,	236
B.	<i>Potential Control Instrumentation—the Potentiostat</i> ,	256
C.	<i>Current Control Instrumentation—the Galvanostat</i> ,	269
D.	<i>Control of Charge—the Coulostat</i> ,	273
E.	<i>Digital Control Instrumentation—Minicomputers</i> ,	274
III.	Noise Sources and Optimization of Signal-to-Noise Ratios,	281
A.	<i>Introduction</i> ,	281
B.	<i>Sources of Noise</i> ,	281
C.	<i>Noise Figure</i> ,	285
D.	<i>Extraction of Signals from Noise</i> .	286

IV. Homemade and Commercial Instrumentation,	288
A. <i>To Build or Buy</i> ,	288
B. <i>Building</i> ,	292
C. <i>Buying</i> ,	294
 Chapter 6. Potentiometric Measurements	 301
I. Introduction,	301
II. Principles and Fundamental Relations,	302
III. Electrode Systems,	306
IV. Application to Potentiometry,	314
 Chapter 7. Controlled Potential Methods	 329
I. Introduction—Control of Potential and Measurement of Current,	329
II. Principles and Fundamental Relations,	331
III. Methodology,	343
IV. Application of Controlled Potential Methods,	357
V. A-C and Pulse Methods,	389
 Chapter 8. Controlled Current Methods	 395
 Chapter 9. Electrochemical Titrations	 405
I. Introduction,	405
II. End-Point Detection Methods,	405
III. Autotitrators,	415
IV. pH-Stats,	416
V. Coulometric Titrations,	418
 Index	 429