

Contents

Contributors xi

Preface xiii

1. Use of Phage λ Regulatory Signals to Obtain Efficient Expression of Genes in *Escherichia coli*

ALLAN SHATZMAN, YEN-SEN HO, AND MARTIN ROSENBERG

I. Introduction	2
II. Expression of Prokaryotic Gene Products	2
III. Expression of Eukaryotic Genes	8
References	14

2. Multipurpose Expression Cloning Vehicles in *Escherichia coli*

YOSHIHIRO MASUI, JACK COLEMAN, AND MASAYORI INOUYE

I. Introduction	15
II. pIN-I Vectors	17
III. pIN-II Vectors	21
IV. pIN-III Vectors	23
V. pIM Vectors: High-Copy-Number Vectors	24
VI. pIC Vectors: Hybrid Expression Vectors	26
VII. Promoter-Proving Vectors	28
VIII. General Cloning Strategy	30
IX. Summary	31
References	31

3. Molecular Cloning in *Bacillus subtilis*

DAVID DUBNAU

I. Introduction	33
II. Plasmid Transformation	34
III. Plasmid Vectors	36
IV. Cloning Stratagems	45

V. Expression of Cloned Genes	47
VI. Conclusions	48
References	49
4. Developments in <i>Streptomyces</i> Cloning	
MERVYN J. BIBB, KEITH F. CHATER, AND DAVID A. HOPWOOD	
I. Introduction	54
II. Vectors	54
III. Use of Tn5 in Relation to <i>Streptomyces</i> DNA	66
IV. Applications of DNA Cloning in <i>Streptomyces</i>	67
V. Concluding Remarks	79
References	80
5. Vectors for High-Level, Inducible Expression of Cloned Genes in Yeast	
JAMES R. BROACH, YU-YANG LI, LING-CHUAN CHEN WU, AND MAKKUNI JAYARAM	
I. Introduction	84
II. Materials and Methods	85
III. Results and Discussion	87
IV. Summary	107
Appendix: Plasmid Construction	107
References	115
6. Genetic Engineering of Plants by Novel Approaches	
JOHN D. KEMP	
I. Introduction	119
II. Novel Approaches to Creating Genetic Diversity	121
III. Concluding Remarks	113
References	134
7. λSV2, a Plasmid Cloning Vector that Can Be Stably Integrated in <i>Escherichia coli</i>	
BRUCE H. HOWARD AND MAX E. GOTTESMAN	
I. Introduction	138
II. Materials and Methods	138
III. Results	141
IV. Discussion	150
References	152
8. Construction of Highly Transmissible Mammalian Cloning Vehicles Derived from Murine Retroviruses	
RICHARD C. MULLIGAN	
I. Introduction	155
II. General Strategy	157

III. Construction of a Prototype Retrovirus Vector	159
IV. Rescue of Recombinant Genomes as Infectious Virus	162
V. Characteristics of Retrovirus-Mediated Transformation	164
VI. Useful Derivative Vectors	167
VII. Conclusions and Prospects	170
References	172

9. Use of Retrovirus-Derived Vectors to Introduce and Express Genes in Mammalian Cells

ELI GILBOA

I. Introduction	175
II. Organization of the M-MuLV Genome	176
III. Use of Retrovirus Vectors to Study the Mechanism of Gene Expression of the M-MuLV Genome	178
IV. A General Transduction System Derived from the M-MuLV Genome	181
V. Summary and Prospects	187
References	188

10. Production of Posttranslationally Modified Proteins in the SV40-Monkey Cell System

DEAN H. HAMER

I. Introduction	191
II. SV40 Late-Replacement Vectors	192
III. Human Growth Hormone	193
IV. Hepatitis B Surface Antigen	200
V. Conclusions and Prospects	207
References	209

11. Adenovirus Type 5 Region-E1A Transcriptional Control Sequences

PATRICK HEARING AND THOMAS SHENK

I. Introduction	211
II. Deletion Mutations in the 5'-Flanking Sequences of Ad5 Region E1A	213
III. Analysis of Mutagenized Templates in Cell-Free Transcription Extracts	214
IV. Analysis of Cytoplasmic E1A mRNAs Found <i>in Vivo</i> after Infection with Deletion Mutants	216
V. 5'-End Analyses of E1A mRNAs Synthesized <i>in Vivo</i> after Infection with Deletion Mutants	218
VI. E1A Transcriptional Control Region and Comparison to Other Eukaryotic Control Regions	219
References	222

12. Expression of Proteins on the Cell Surface Using Mammalian Vectors

JOE SAMBROOK AND MARY-JANE GETHING

I. How Proteins Are Normally Expressed on Mammalian Cell Surfaces	226
II. Why It Would Be Useful to Express Proteins on the Surface of the Mammalian Cell	228
III. Hemagglutinin of Influenza Virus Is the Best-Characterized Integral Membrane Protein	229
IV. The Gene Coding for Hemagglutinin Is of Simple Structure	232
V. Vector Systems	233
VI. Hemagglutinin Is Efficiently Expressed from Both the Early and Late SV40 Promoters	237
VII. Small-t Intron Leads to Genetic Instability of the Early-Replacement Vector	238
VIII. Hemagglutinin Synthesized by SV40-HA Recombinants Is Biologically Active	240
IX. Removing the C-Terminal Hydrophobic Sequence Converts Hemagglutinin from an Integral Membrane Protein to a Secreted Protein	242
X. Prospects	243
References	244

13. Expression of Human Interferon- γ in Heterologous Systems

RIK DERYNCK, RONALD A. HITZEMAN, PATRICK W. GRAY, AND DAVID V. GOEDDEL

I. Introduction	247
II. Structure of the Human Interferon- γ cDNA	248
III. Heterologous Expression in <i>Escherichia coli</i>	249
IV. Expression in the Yeast <i>Saccharomyces cerevisiae</i>	251
V. Conclusion	256
References	257

14. Commercial Production of Recombinant DNA-Derived Products

J. PAUL BURNETT

I. Introduction	259
II. Production of Biosynthetic Human Insulin	261
III. Other Pharmaceutical Applications of Recombinant DNA	272
IV. Conclusion	276
References	277

Appendix 1. Two-Dimensional DNA Electrophoretic Methods Utilizing *in Situ* Enzymatic Digestions

THOMAS YEE AND MASAYORI INOUYE

I. Introduction	280
II. Experimental Procedures	280
III. Examples	283
IV. Conclusion	289
References	290

Appendix 2. Site-Specific Mutagenesis Using Synthetic Oligodeoxyribonucleotides as Mutagens

GEORGE P. VLASUK AND SUMIKO INOUYE

I. Introduction	292
II. Experimental Procedures	293
III. Example	298
IV. Conclusion	301
References	302

Index

305