

Contents

<i>Foreword</i>	xiii
<i>List of Contributors</i>	xv
<i>Acknowledgements</i>	xvii
<i>Abbreviations</i>	xix
1 Volatiles – An Interdisciplinary Approach	1
<i>Andreas Herrmann</i>	
1.1 Introduction	1
1.2 Geraniol – A Typical Example	2
1.3 Conclusion	8
References	8
2 Biosynthesis and Emission of Isoprene, Methylbutanol and Other Volatile Plant Isoprenoids	11
<i>Hartmut K. Lichtenhaler</i>	
2.1 Introduction	11
2.2 Plant Isoprenoids	12
2.3 Two IPP-Yielding Pathways in Plants	15
2.4 Prenyl Chain Formation and Elongation	16
2.5 Compartmentation of Plant Isoprenoid Biosynthesis	16
2.6 The Enzyme Steps of the Plastidic DOXP/MEP Pathway of IPP Formation	17
2.7 Cross-Talk Between the Two IPP Biosynthesis Pathways	19
2.8 Biosynthesis and Emission of Volatile Isoprene at High Irradiance	22
2.8.1 Regulation of Isoprene Emission	25
2.9 Inhibition of Isoprene Biosynthesis	26
2.9.1 Fosmidomycin and 5-Ketoclamazone	26
2.9.2 Diuron	27
2.10 Inhibition of Carotenoid and Chlorophyll Biosynthesis by Fosmidomycin and 5-Ketoclamazone	27
2.11 Biosynthesis and Emission of Methylbutenol at High Irradiance	28
2.12 Source of Pyruvate for Isoprene and Methylbutenol Biosynthesis	29
2.13 Branching Point of DOXP/MEP Pathway with Other Metabolic Chloroplast Pathways	30
2.14 Is There a Physiological Function of Isoprene and MBO Emission?	31
2.15 Biosynthesis and Emission of Monoterpene, Sesquiterpenes and Diterpenes	33

2.15.1	Monoterpenes	35
2.15.2	Diterpenes	36
2.15.3	Sesquiterpenes	36
2.16	Some General Remarks on the Regulation of Terpene Biosynthesis in Plants	36
2.17	Volatile Terpenoids as Aroma Compounds of Wine	37
2.18	Function of Terpenes in Plant Defence	38
2.19	Conclusion	38
	Acknowledgements	39
	References	40
3	Analysis of the Plant Volatile Fraction	49
	<i>Patrizia Rubiolo, Barbara Sgorbini, Erica Liberto, Chiara Cordero and Carlo Bicchi</i>	
3.1	Introduction	49
3.2	Sample Preparation	50
3.2.1	'Liquid' Phase Sampling	51
3.2.2	Headspace Sampling	51
3.2.3	Headspace–Solid Phase Microextraction	52
3.2.4	In-Tube Sorptive Extraction	54
3.2.5	Headspace Sorptive Extraction	55
3.2.6	Static and Trapped Headspace	56
3.2.7	Solid-Phase Aroma Concentrate Extraction	56
3.2.8	Headspace Liquid-Phase Microextraction	56
3.2.9	Large Surface Area High Concentration Capacity Headspace Sampling	59
3.3	Analysis	59
3.3.1	Fast-GC and Fast-GC-qMS EO Analysis	61
3.3.2	Qualitative Analysis	65
3.3.3	Quantitative Analysis	66
3.3.4	Enantioselective GC	70
3.3.5	Multidimensional GC Techniques	75
3.4	Further Developments	76
3.5	Conclusion	85
	Acknowledgements	87
	References	87
4	Plant Volatile Signalling: Multitrophic Interactions in the Headspace	95
	<i>André Kessler and Kimberly Morrell</i>	
4.1	Introduction	95
4.2	The Specificity and Complexity of Herbivore-Induced VOC Production	97
4.2.1	Plant Endogenous Wound Signalling	99
4.2.2	Herbivore-Derived Elicitors of VOC Emission	102
4.3	Ecological Consequences of VOC Emission	104
4.3.1	Within-Plant Defence Signalling	104

4.3.2	Herbivore-Induced VOC Emission as Part of a Metabolic Reconfiguration of the Plant	105
4.3.3	Herbivores Use VOCs to Select Host Plants	107
4.3.4	VOCs as Indirect Defences Against Herbivores	108
4.3.5	VOCs in Plant–Plant Interactions	111
4.4	Conclusion	112
	Acknowledgements	114
	References	114
5	Pheromones in Chemical Communication	123
	<i>Kenji Mori</i>	
5.1	Introduction	123
5.1.1	Definition of Pheromones	123
5.1.2	Classification of Pheromones	123
5.2	History of Pheromone Research	125
5.3	Research Techniques in Pheromone Science	127
5.3.1	The Collecting of Pheromones	127
5.3.2	Bioassay-Guided Purification	128
5.3.3	Structure Determination and Synthesis	128
5.3.4	Field Bioassay	129
5.3.5	Structure Elucidation of the Male-Produced Aggregation Pheromone of the Stink Bug <i>Eysarcoris lewisi</i> – A Case Study	129
5.4	Structural Diversity Among Pheromones	132
5.5	Complexity of Multicomponent Pheromones	137
5.6	Stereochemistry and Pheromone Activity	139
5.6.1	Only a Single Enantiomer is Bioactive and its Opposite Enantiomer Does Not Inhibit the Response to the Active Isomer	139
5.6.2	Only One Enantiomer is Bioactive, and its Opposite Enantiomer Inhibits the Response to the Pheromone	139
5.6.3	Only One Enantiomer is Bioactive, and its Diastereomer Inhibits the Response to the Pheromone	139
5.6.4	The Natural Pheromone is a Single Enantiomer, and its Opposite Enantiomer or Diastereomer is Also Active	140
5.6.5	The Natural Pheromone is a Mixture of Enantiomers or Diastereomers, and Both of the Enantiomers, or All of the Diastereomers are Separately Active	141
5.6.6	Different Enantiomers or Diastereomers are Employed by Different Species	141
5.6.7	Both Enantiomers are Necessary for Bioactivity	141
5.6.8	One Enantiomer is More Active Than the Other, but an Enantiomeric or Diastereomeric Mixture is More Active Than the Enantiomer Alone	141

5.6.9 One Enantiomer is Active on Males, While the Other is Active on Females	142
5.6.10 Only the <i>meso</i> -Isomer is Active	142
5.7 Pheromones With Kairomonal Activities	142
5.8 Mammalian Pheromones	143
5.9 Invention of Pheromone Mimics	145
5.10 Conclusion	147
Acknowledgements	147
References	147
6 Use of Volatiles in Pest Control	151
<i>J. Richard M. Thacker and Margaret R. Train</i>	
6.1 Introduction	151
6.2 Repellents (DEET, Neem, Essential Oils)	151
6.3 Volatile Synthetic Chemicals and Fumigants	154
6.4 Pheromones	158
6.5 Volatile Allelochemicals	165
6.6 Plant Volatiles and Behavioural Modification of Beneficial Insects	166
6.7 Concluding Comments	167
References	168
7 Challenges in the Synthesis of Natural and Non-Natural Volatiles	173
<i>Anthony A. Birkbeck</i>	
7.1 Introduction – The Art of Organic Synthesis	173
7.2 Overcoming Challenges in the Small-Scale Synthesis of Natural Volatile Compounds	174
7.2.1 D,L-Caryophyllene (1964)	174
7.2.2 β -Vetivone (1973)	175
7.3 Overcoming Challenges in the Large-Scale Synthesis of Nature Identical and Non-Natural Molecules	176
7.3.1 (Z)-3-Hexenol	176
7.3.2 Citral	177
7.3.3 (–)-Menthol	179
7.3.4 Habanolide	180
7.4 Remaining Challenges in the Large-Scale Synthesis of Natural and Non-Natural Volatiles	180
7.5 Design and Synthesis of Novel Odorants and Potential Industrial Routes to a Natural Product	182
7.5.1 Cassis (Blackcurrant)	182
7.5.2 Patchouli	184
7.5.3 Musk	187
7.5.4 Sandalwood	189
7.6 Other Challenges	193
7.7 Conclusion	193
Acknowledgements	194

Dedication	195
References	195
8 The Biosynthesis of Volatile Sulfur Flavour Compounds	203
<i>Meriel G. Jones</i>	
8.1 Introduction: Flavours as Secondary Metabolites	203
8.2 Sulfur in Plant Biology	204
8.3 Sulfur Compounds as Flavour Volatiles	205
8.4 The Alk(en)yl Cysteine Sulfoxide Flavour Precursors	206
8.5 Biosynthesis of the Flavour Precursors of <i>Allium</i>	207
8.5.1 The Biosynthesis of <i>Allium</i> Flavour Precursors via γ -Glutamyl Peptides	208
8.5.2 The Biosynthesis of <i>Allium</i> Flavour Precursors via Cysteine Synthases	209
8.6 Formation of Volatiles from CSOs	210
8.6.1 S-Methyl-L-cysteine sulfoxide	210
8.6.2 Release of the <i>Allium</i> CSOs	211
8.7 The <i>Allium</i> Flavour Volatiles	212
8.8 The Enzyme Alliinase	213
8.9 The Enzyme Lachrymatory Factor Synthase	214
8.10 The Biological Roles of the Flavour Precursors	215
8.11 The Glucosinolate Flavour Precursors	216
8.12 GS and Their Biosynthetic Pathways	216
8.13 Release of Volatile GS Hydrolysis Products	218
8.14 The Biological Role of Glucosinolates	220
8.15 Application of Transgenic Technology to Applied Aspects of GS Biosynthesis	222
8.16 Volatile Sulfur Compounds from Other Plants	222
8.16.1 Complex Organic Sulfur Volatiles	222
8.16.2 Simple Sulfur Volatiles	223
8.16.3 Hydrogen Sulfide	223
8.16.4 Methanethiol	224
8.17 Conclusion	224
References	224
9 Thermal Generation of Aroma-Active Volatiles in Food	231
<i>Christoph Cerny</i>	
9.1 Introduction	231
9.2 The Maillard Reaction	233
9.2.1 The Amadori Rearrangement	234
9.2.2 Deoxyosones	235
9.2.3 Retro-Aldolization	235
9.3 Formation of Aroma Compounds in the Later Stages of the Maillard Reaction	237
9.3.1 2-Furfurylthiol	237

9.3.2	4-Hydroxy-2,5-dimethyl-3(2H)-furanone	239
9.3.3	Alkyl and Alkenylpyrazines	239
9.3.4	2-Acetyl-1-pyrroline	241
9.4	The Strecker Degradation	241
9.5	Caramelization	244
9.6	Thiamin Degradation	246
9.7	Ferulic Acid Degradation	246
9.8	Fat Oxidation	247
9.9	Conclusion	250
	References	250
10	Human Olfactory Perception	253
	<i>Alan Gelperin</i>	
10.1	Introduction	253
10.2	Historical Perspective on Olfactory Perception	254
10.3	Human Olfactory Pathway	255
10.4	Functional Studies in Human Subjects	256
10.5	Functional Studies in Brain-Damaged Subjects	259
10.6	Single Odorants, Binary Mixtures and Complex Odour Objects	259
10.7	Olfactory Versus Trigeminal Odorant Identification	262
10.8	Orthonasal Versus Retronasal Odour Perception	263
10.9	Specific Anosmias	264
10.10	MHC-Correlated Odour Preferences in Human Subjects	265
10.11	Odour Deprivation and Odour Perception	266
10.12	Age-Related Decline in Olfactory Perception	267
10.13	New Neurons in Adult Brains	268
10.14	Epidemiological Studies of Human Olfaction	268
10.15	Active Sampling and Olfactory Perception	269
10.16	Human Olfactory Imagery	270
10.17	Top-Down Influences on Olfactory Perception	271
10.18	Reproductive State and Olfactory Sensitivity	272
10.19	Olfaction, Hunger and Satiety	273
10.20	Odour Perception Bias by Odour Names	274
10.21	Olfaction and Disease States	275
10.22	Prenatal and Postnatal Influences on Infant Odour/Flavour Preferences	276
10.23	Future Directions	277
	Acknowledgements	277
	References	278
11	Perfumery – The Wizardry of Volatile Molecules	291
	<i>Christophe Laudamiel</i>	
11.1	The Big Picture	291
11.2	Wizardry No. 1: Full Holograms Create Real Emotions	292
11.3	Volatiles Need a Language Wizard	296

11.4	Wizardry No. 2: The Perfumer in the Jungle of Volatiles to Create Emotions	298
11.5	Wizardry No. 3: End Results Are Music to the Nose	303
	References	304
12	Microencapsulation Techniques for Food Flavour	307
	<i>Youngjae Byun, Young Teck Kim, Kashappa Goud H. Desai and Hyun Jin Park</i>	
12.1	Demands	307
12.2	Microencapsulation in the Food Industry	307
12.3	Techniques and Materials for Flavour Microencapsulation	308
12.3.1	Spray Drying	308
12.3.2	Extrusion	312
12.3.3	Cyclodextrin Inclusion Complexes	314
12.3.4	Helical Inclusion Complexes	316
12.3.5	Fluidized Bed Coating	318
12.3.6	Top Spray Fluidized Bed Coating	318
12.3.7	Bottom Spray System	318
12.3.8	Wurster System	320
12.3.9	Tangential Spray or Rotary Fluidized Bed Coating	320
12.3.10	Coacervation	320
12.3.11	Double or Multiple Emulsion with Freeze Drying	321
12.3.12	Co-Crystallization	322
12.3.13	Spray Chilling and Spray Cooling	322
12.3.14	Supercritical Fluids	323
12.3.15	Other Techniques	323
12.4	Conclusion and Future Trends	325
	References	326
13	Profragrances and Properfumes	333
	<i>Andreas Herrmann</i>	
13.1	Introduction	333
13.2	Release of Alcohols	335
13.2.1	Enzymatic Hydrolysis	335
13.2.2	Neighbouring-Group-Assisted, Non-Enzymatic Hydrolysis	340
13.3	Release of Carbonyl Derivatives	346
13.3.1	Oxidations	346
13.3.2	Reversible Systems	350
13.3.3	Retro 1,4-Additions	354
13.4	Profragrance and Properfume Strategies	356
13.4.1	Performance and Cost Efficiency	356
13.4.2	Stability	357
13.5	Conclusion	357
	Acknowledgements	358
	References	358

14 Reactions of Biogenic Volatile Organic Compounds in the Atmosphere	363
<i>Russell K. Monson</i>	
14.1 Introduction	363
14.2 The Relative Importance of Anthropogenic Versus Biogenic VOC Emissions to Atmospheric Chemistry	364
14.3 Overview of BVOC Oxidation	365
14.4 The Types of Emitted BVOCs and General Roles in Atmospheric Chemistry	370
14.5 Gas Phase Oxidation of BVOCs	372
14.6 Gas Phase Chemistry of BVOCs in Urban and Suburban Airsheds	374
14.7 Gas Phase Chemistry Within and Above Forests	375
14.8 BVOC Emissions and SOA Formation	377
14.9 Conclusion	381
References	381
Index	389