

Contents

1. Introduction

- 1.1 Preamble 1
- 1.2 Why Aerospace Composites? 3
- 1.3 What Are Aerospace Composites? 3
 - 1.3.1 Definition of Aerospace Composites 3
 - 1.3.2 High-Performance Fibers for Aerospace Composites Applications 4
 - 1.3.3 High-Performance Matrices for Aerospace Composites Applications 5
 - 1.3.4 Advantages of Composites in Aerospace Usage 5
 - 1.3.5 Fabrication of Aerospace Composites 7
- 1.4 Evolution of Aerospace Composites 8
 - 1.4.1 Early Advances 9
 - 1.4.2 Composite Growth in the 1960s and 1970s 9
 - 1.4.3 Composites Growth Since the 1980s 10
- 1.5 Today's Aerospace Composites 10
 - 1.5.1 Boeing 787 Dreamliner 12
 - 1.5.2 Airbus A350 XWB 14
- 1.6 Challenges for Aerospace Composites 15
 - 1.6.1 Concerns about the Aerospace Use of Composites 16
 - 1.6.2 The November 2001 Accident of AA Flight 587 16
 - 1.6.3 Fatigue Behavior of Composite Materials 17
 - 1.6.4 The Future of Composites in Aerospace 18
- 1.7 About This Book 20
- References 22

2. Fundamentals of Aerospace Composite Materials

- 2.1 Introduction 26
- 2.2 Anisotropic Elasticity 27
 - 2.2.1 Basic Notations 28
 - 2.2.2 Stresses—The Stress Tensor 28
 - 2.2.3 Strain—Displacement Relations—The Strain Tensor 29

- 2.2.4 Stress—Strain Relations 29
- 2.2.5 Equation of Motion in Terms of Stresses 35
- 2.2.6 Equation of Motion in Terms of Displacements 35
- 2.3 Unidirectional Composite Properties 37
 - 2.3.1 Elastic Constants of a Unidirectional Composite 37
 - 2.3.2 Compliance Matrix of a Unidirectional Composite 38
 - 2.3.3 Stiffness Matrix of a Unidirectional Composite 40
 - 2.3.4 Estimation of Elastic Constants from the Constituent Properties 41
- 2.4 Plane-Stress 2D Elastic Properties of a Composite Layer 47
 - 2.4.1 Plane-Stress 2D Compliance Matrix 47
 - 2.4.2 Plane-Stress 2D Stiffness Matrix 48
 - 2.4.3 Rotated 2D Stiffness Matrix 49
 - 2.4.4 Rotated 2D Compliance Matrix 52
 - 2.4.5 Proof of $RTR^{-1} = T^{-t}$ 53
- 2.5 Fully 3D Elastic Properties of a Composite Layer 54
 - 2.5.1 Orthotropic Stiffness Matrix 55
 - 2.5.2 Rotated Stiffness Matrix 56
 - 2.5.3 Equations of Motion for a Monoclinic Composite Layer 61
 - 2.5.4 Rotated Compliance Matrix 62
 - 2.5.5 Note on the Use of Closed-Form Expression in the C and S matrices 63
 - 2.5.6 Proof of $RTR^{-1} = T^{-t}$ in 3D 63
- 2.6 Problems and Exercises 65
- References 65

3. Vibration of Composite Structures

- 3.1 Introduction 68
 - 3.1.1 Displacements for Axial—Flexural Vibration of Composite Plates 68
 - 3.1.2 Stress Resultants 69

3.2 Equations of Motion in Terms of Stress Resultants 70	4. Guided Waves in Thin-Wall Composite Structures
3.2.1 Derivation of Equations of Motion from Free Body Diagram 70	4.1 Introduction 98
3.2.2 Derivation of Axial–Flexural Equations from Stress Equations of Motion 71	4.1.1 Overview 98
3.2.3 Summary of Equations of Motion in Terms of Stress Resultants 76	4.1.2 Problem Setup 99
3.2.4 Strains in Terms of Displacements 77	4.1.3 State of the Art in Modeling Guided-Wave Propagation in Laminated Composites 99
3.2.5 Strains in Terms of Mid-Surface Strains and Curvatures 78	4.1.4 Chapter Layout 101
3.3 Vibration Equations for an Anisotropic Laminated Composite Plate 79	4.2 Wave Propagation in Bulk Composite Material—Christoffel Equations 101
3.3.1 Stress–Strain Relations for an Anisotropic Laminated Composite Plate 79	4.2.1 Equation of Motion in Terms of Displacements 102
3.3.2 Stresses in Terms of Mid-Surface Strains and Curvatures for an Anisotropic Laminated Composite Plate 80	4.2.2 Christoffel Equation for Bulk Composites 103
3.3.3 Stress Resultants in Terms of Mid-Surface Strains and Curvatures for an Anisotropic Laminated Composite Plate 80	4.3 Guided Waves in a Composite Ply 104
3.3.4 Equations of Motion in Terms of Displacements for an Anisotropic Laminated Composite Plate 83	4.3.1 Guided Wave as a Superposition of Partial Waves 104
3.3.5 Vibration Frequencies and Modeshapes of an Anisotropic Laminated Composite Plate 85	4.3.2 Coherence Condition—Generalized Snell's Law 105
3.4 Vibration Equations for an Isotropic Plate 86	4.3.3 Christoffel Equation for a Lamina 106
3.4.1 Isotropic Stress–Strain Relations 87	4.3.4 Stresses 109
3.4.2 Stresses in Terms of Mid-Surface Strains and Curvatures for an Isotropic Plate 87	4.3.5 State Vector and Field Matrix 112
3.4.3 Stress Resultants for an Isotropic Plate 88	4.3.6 Dispersion Curves 112
3.4.4 Equations of Motion in Terms of Displacements for an Isotropic Plate 89	4.4 Guided-Wave Propagation in a Laminated Composite 114
3.4.5 Vibration Frequencies and Modeshapes of an Isotropic Plate 91	4.4.1 Global Matrix Method (GMM) 115
3.5 Special Cases 93	4.4.2 Transfer Matrix Method (TMM) 116
3.5.1 Symmetric Laminates 93	4.4.3 Stiffness Matrix Method (SMM) 118
3.5.2 Isotropic Laminates 95	4.5 Numerical Computation 122
3.6 Problems and Exercises 95	4.6 Problems and Exercises 122
References 95	References 122
	5. Damage and Failure of Aerospace Composites
	5.1 Introduction 126
	5.2 Composites Damage and Failure Mechanisms 127
	5.2.1 Fiber and Matrix Stress–Strain Curves 127
	5.2.2 Failure Modes in Unidirectional Fiber-Reinforced Composites 129
	5.3 Tension Damage and Failure of a Unidirectional Composite Ply 132
	5.3.1 Strain-Controlled Tension Failure due to Fracture of the Fibers 132

5.3.2 Statistical Effects on Unidirectional Composite Strength and Failure	132	5.9.3 Composite Sandwich Damage	166	
5.3.3 Shear-Lag Load Sharing between Broken Fibers	133	5.9.4 Damage in Adhesive Composite Joints	168	
5.3.4 Fiber Pullout	135	5.10 Fabrication Defects versus In-service Damage	169	
5.4 Tension Damage and Failure in a Cross-Ply Composite Laminate	136	5.10.1 Fabrication Defects	169	
5.4.1 Ply Discount Method	136	5.10.2 In-service Damage	170	
5.4.2 Progressive Failure of a Cross-Ply Laminate	136	5.11 What Could SHM Systems Aim to Detect?	171	
5.4.3 Interfacial Stresses at Laminate Edges and Cracks	139	5.12 Summary and Conclusions	173	
5.4.4 Effect of Matrix Cracking on Interlaminar Stresses	142	References	174	
5.5 Characteristic Damage State (CDS)	142	6. Piezoelectric Wafer Active Sensors		
5.5.1 Definition of the Characteristic Damage State	142	6.1 Introduction	179	
5.5.2 Damage Modes That Modify Local Stress Distribution	145	6.1.1 SMART Layer TM and SMART Suitcase TM	179	
5.5.3 Stiffness Evolution with Damage Accumulation	146	6.1.2 Advantages of PWAS Transducers	183	
5.6 Fatigue Damage in Aerospace Composites	148	6.2 PWAS Construction and Operational Principles	183	
5.6.1 Fatigue of Unidirectional Composites	148	6.3 Coupling between the PWAS Transducer and the Monitored Structure	186	
5.6.2 Fatigue of Cross-Ply Composite Laminate	150	6.3.1 1D Analysis of PWAS Coupling	187	
5.7 Long-Term Fatigue Behavior of Aerospace Composites	152	6.3.2 Shear-Layer Analysis for a Circular PWAS	194	
5.7.1 Damage Region I—Progression toward Widespread CDS	152	6.4 Tuning between PWAS Transducers and Structural Guided Waves	196	
5.7.2 Damage Region II—Crack Coupling and Delamination	154	6.4.1 Lamb-Wave Tuning with Linear PWAS Transducers	197	
5.7.3 Damage Region III—Damage Acceleration and Final Failure	157	6.4.2 Lamb-Wave Tuning with Circular PWAS	201	
5.7.4 Summary of Long-Term Fatigue Behavior of Composites	159	6.5 Wave Propagation SHM with PWAS Transducers	204	
5.8 Compression Fatigue Damage and Failure in Aerospace Composites	159	6.5.1 Pitch-Catch Guided-Wave Propagation SHM	205	
5.8.1 Compression Fatigue Delamination Damage	159	6.5.2 Pulse-Echo Guided-Wave Propagation SHM	205	
5.8.2 Compression Fatigue Local Microbuckling Damage	160	6.5.3 Impact and AE Wave Propagation SHM	210	
5.8.3 Compression Fatigue Damage under Combined Tension-Compression Loading	163	6.6 PWAS Phased Arrays and the Embedded Ultrasonics Structural Radar	212	
5.9 Other Composite Damage Types	163	6.6.1 Phased-Array Processing Concepts	212	
5.9.1 Fastener Hole Damage in Composites	163	6.6.2 Beamforming Formulae for 2D PWAS Phased Arrays	216	
5.9.2 Impact Damage in Composites	165	6.6.3 Linear PWAS Phased Arrays	220	
		6.6.4 Embedded Ultrasonics Structural Radar	225	
		6.6.5 EUSR System Design and Experimental Validation	227	

6.7	PWAS Resonators	230
6.7.1	Linear PWAS Resonators	231
6.7.2	Circular PWAS Resonators	234
6.7.3	Constrained Linear PWAS Resonators	236
6.7.4	Constrained Circular PWAS Resonators	237
6.8	High-Frequency Vibration SHM with PWAS Modal Sensors—The Electromechanical (E/M) Impedance Technique	238
6.8.1	Linear PWAS Modal Sensors	239
6.8.2	Circular PWAS Modal Sensors	242
6.8.3	Damage Detection with PWAS Modal Sensors and the E/M Impedance Technique	246
	References	248

7. Fiber-Optic Sensors

7.1	Introduction	250
7.1.1	Intensity Modulation Fiber-Optic Sensors	251
7.1.2	Polarization Modulation Fiber-Optic Sensors	251
7.1.3	Phase Modulation Fiber-Optic Sensors	251
7.1.4	Spectral Modulation Fiber-Optic Sensors	252
7.1.5	Scattering Modulation Fiber-Optic Sensors	253
7.2	General Principles of Fiber Optic Sensing	253
7.2.1	Total Internal Reflection	253
7.2.2	Single-Mode and Multimode Optical Fibers	254
7.3	Interferometric Fiber-Optic Sensors	256
7.3.1	Mach–Zehnder and Michelson Interferometers	256
7.3.2	Intrinsic Fabry–Perot Sensors	256
7.3.3	Extrinsic Fabry–Perot Interferometric Sensors	256
7.3.4	Transmission EFPI Fiber-Optic Sensors	259
7.3.5	In-line Fiber Etalon Sensors	260
7.4	FBG Optical Sensors	260
7.4.1	FBG Principles	261
7.4.2	Fabrication of FBG Sensors	262

7.4.3	Conditioning Equipment for FBG Sensors	264
7.4.4	FBG Demodulators for Ultrasonic Frequencies	269
7.4.5	FBG Rosettes	281
7.4.6	Long-Gage FBG Sensors	281
7.4.7	Temperature Compensation in FBG Sensing	283
7.5	Intensity-Modulated Fiber-Optic Sensors	285
7.5.1	Typical Intensity-Modulated Fiber-Optic Sensors	285
7.5.2	Intensity-Based Optical Fiber Sensors	285
7.6	Distributed Optical Fiber Sensing	286
7.6.1	Optical Time Domain Reflectometry	287
7.6.2	Brillouin Optical Time Domain Reflectometry	288
7.6.3	Continuous Fiber Sensing Using Rayleigh Backscatter	290
7.6.4	Fiber-Optic Temperature Laser Radar	291
7.7	Triboluminescence Fiber-Optic Sensors	291
7.8	Polarimetric Optical Sensors	292
7.9	Summary and Conclusions	293
	References	293

8. Other Sensors for SHM of Aerospace Composites

8.1	Introduction	298
8.2	Conventional Resistance Strain Gages	298
8.2.1	Resistance Strain Gage Principles	298
8.2.2	Strain Gage Instrumentation	299
8.2.3	Aerospace Strain Gage Technology	302
8.2.4	Strain Gage Usage in Aerospace Composites	302
8.3	Electrical Property Sensors	305
8.3.1	Electrical Resistance and Electrical Potential Methods for Composites SHM	305
8.3.2	Frequency Domain Methods for Electrical SHM of Aerospace Composites	311
	References	313

9. Impact and Acoustic Emission Monitoring for Aerospace Composites SHM	318	9.5.4 Hybrid Electromagnetic SHM of Aerospace Composites	381
9.1 Introduction	318	9.5.5 Self-Sensing Electrical Resistance-Based Damage Detection and Localization	383
9.2 Impact Monitoring—PSD	319	9.6 PSD and ASD of Sandwich Composite Structures	384
9.2.1 PSD for Impact Location and Force Identification	319	9.7 Summary and Conclusions	386
9.2.2 Triangulation Example	320	References	388
9.2.3 Model-Based Impact Monitoring	323		
9.2.4 Data-Driven Impact Monitoring	326		
9.2.5 Directional Sensors Approach to Impact Detection	328		
9.2.6 AE Monitoring	330		
9.2.7 Simultaneous Monitoring of Impact and AE Events	331		
9.3 Impact Damage Detection—ASD and Acousto-Ultrasonics	334		
9.3.1 ASD with Piezo Transmitters and Piezo Receivers	335		
9.3.2 ASD with Piezo Transmitters and Fiber-Optic Receivers	342		
9.3.3 Guided-Wave Tomography and Data-Driven ASD	345		
9.3.4 PWAS Pulse-Echo Crack Detection in Composite Beam	346		
9.3.5 Phased Arrays and Directional Transducers	347		
9.4 Other Methods for Impact Damage Detection	352		
9.4.1 Direct Methods for Impact Damage Detection	352		
9.4.2 Strain-Mapping Methods for Damage Detection	357		
9.4.3 Vibration SHM of Composites	358		
9.4.4 Frequency Transfer Function SHM of Composites	361		
9.4.5 Local-Area Active Sensing with EMIS Method	363		
9.5 Electrical and Electromagnetic Field Methods for Delamination Detection	365		
9.5.1 Delamination Detection with the Electrical Resistance Method	365		
9.5.2 Delamination Detection with the Electrical Potential Method	375		
9.5.3 Electromagnetic Damage Detection in Aerospace Composites	381		
10. SHM of Fatigue Degradation and Other In-Service Damage of Aerospace Composites			
10.1 Introduction	396		
10.2 Monitoring of Strain, Acoustic Emission, and Operational Loads	397		
10.2.1 Strain Distribution Monitoring	401		
10.2.2 Composite Panel Buckling Monitoring	405		
10.3 Acoustic Emission Monitoring	405		
10.4 Simultaneous Monitoring of Strain and Acoustic Emission	407		
10.5 Fatigue Damage Monitoring	409		
10.5.1 Fiber-Optic Monitoring of Transverse Cracks in Cross-ply Composites	409		
10.5.2 Pitch-Catch Guided-Wave Detection of Fatigue Microcracking and Delamination	410		
10.5.3 ECIS Monitoring of Composites Fatigue Damage	414		
10.6 Monitoring of In-service Degradation and Fatigue with the Electrical Resistance Method	416		
10.6.1 Fundamentals of the Electrical Resistance Method	417		
10.6.2 Electrical Resistance SHM of CFRP Composites	418		
10.6.3 Electrical Resistance SHM of CNT Doped GFRP Composites	422		
10.6.4 Wireless Sensing Using the Electrical Resistance Method	423		
10.7 Disbonds and Delamination Detection and Monitoring	425		
10.7.1 Disbond and Delamination Detection with Conventional Ultrasonics Guided Waves	425		
10.7.2 Monitoring of Composite Patch Repairs	425		

- 10.7.3 Monitoring of Composite Adhesive Joints 426
- 10.7.4 Dielectrical SHM of Delamination and Water Seepage in GFRP Composites 428
- 10.8 Summary, Conclusions, and Suggestions for Further Work 430
- References 432

11. Summary and Conclusions

- 11.1 Overview 435
- 11.2 Composites Behavior and Response 436
- 11.3 Damage and Failure of Aerospace Composites 438
- 11.4 Sensors for SHM of Aerospace Composites 440
- 11.5 Monitoring of Impact Damage Initiation and Growth in Aerospace Composites 442
- 11.6 Monitoring of Fatigue Damage Initiation and Growth in Aerospace Composites 443
- 11.7 Summary and Conclusions 445

Index 447