

Plant Physiology

second
edition

R.G.S. Bidwell

Brief Contents

SECTION I

Introduction and Background

1. Introduction	3
2. Chemical Background	8
3. The Cell	43
4. Structure and Growth of Familiar Higher Plants	71

SECTION II

Plant Metabolism

5. Energy Metabolism	89
6. Respiration	108
7. Photosynthesis	146
8. Nitrogen Metabolism	192
9. Polymers and Large Molecules	228

SECTION III

Soil, Water and Air: The Nutrition of Plants

10. Soil and Mineral Nutrition	247
11. Uptake and Movement of Water	272
12. Uptake and Transfer of Solutes	287
13. Translocation	303
14. Leaves and the Atmosphere	323
15. Carbon Nutrition—A Synthesis	346

SECTION IV

The Developing Plant—Plant Behavior

16. Interpretation of Growth and Development	379
17. Sexual Reproduction in Higher Plants	408
18. Patterns of Growth	427

19. Organization in Space	450
20. Organization in Time	472
21. Patterns of Nutrition in Development	511
22. Dormancy, Senescence, and Death	529
23. Action of Hormones and Growth Substances	557

SECTION V**Physiology of Special Organisms**

24. Tree Physiology	585
25. Physiology of Marine Algae	595
26. Parasites and Disease	609
27. Symbiosis	623

SECTION VI**Physiology of Plant Distribution and Communities**

28. Physiology of Plants Under Stress	637
29. Physiological Factors in Plant Distribution	651
30. Plants and Man	668

Author Index	689
---------------------	-----

Index of Plant Names	697
-----------------------------	-----

General Index	705
----------------------	-----

Detailed Contents

SECTION I

Introduction and Background

CHAPTER 1. Introduction

Plant Physiology	3
Plants and Animals	3
Characteristics of Plants and Plant Life That Lead to Specialized Physiology	5
Evolution	6
Applied Botany and Economics	6
Additional Reading	7

CHAPTER 2. Chemical Background

Solutions	8
<i>Solutions of Gas</i>	9
<i>Concentrations</i>	9
Acids and Bases	11
Buffers	11
Colloids	12
Chemical Bonds	14
<i>Electrovalent or Ionic Bonds</i>	14
<i>Covalent Bonds</i>	15
<i>Hydrogen Bonds</i>	16
<i>Weak Forces</i>	16
Oxidation and Reduction	16
Some Organic Chemicals	17
Carbohydrates	23
<i>Stereoisomers</i>	23

<i>Lactones</i>	25
<i>Disaccharides and Polysaccharides</i>	25
<i>Sugar Alcohols, Uronic Acids, and Sugar Acids</i>	29
3 Amino Acids, Peptides and Proteins	31
Nucleic Acids	37
Additional Reading	42

CHAPTER 3. The Cell

The Cell Theory	43
The Cell and Its Parts	44
<i>Cell Wall</i>	44
<i>Membranes</i>	45
<i>Nucleus</i>	50
<i>Endoplasmic Reticulum</i>	50
<i>Golgi Apparatus and Dictyosomes</i>	54
<i>Ribosomes</i>	54
<i>Mitochondria</i>	55
<i>Plastids</i>	57
<i>Glyoxysomes and Peroxisomes</i>	57
<i>Other Subcellular Structures</i>	59
<i>The Vacuole</i>	59
Water and Cells	60
<i>Water Potential</i>	60
<i>Diffusion</i>	61
<i>Differentially Permeable Membranes</i>	61
<i>Osmosis</i>	61
<i>Osmotic Potential and Pressure Potential</i>	62
<i>Measuring ψ_w</i>	64
<i>Water Potential in Cells</i>	65

<i>Movement of Water Between Cells</i>	66	<i>Energy Balance</i>	118
<i>Imbibition</i>	67	<i>Fermentation</i>	118
<i>The Old Approach to Osmosis and Water Movement</i>	68	<i>Localization of Pathways</i>	119
<i>Growth of Cells</i>	68	<i>Mobilization of Substrates</i>	120
<i>Additional Reading</i>	70	<i>Carboxylation Reactions</i>	123
CHAPTER 4. Structure and Growth of Familiar Higher Plants	71	<i>Glyoxylate Cycle</i>	124
<i>Germination</i>	71	<i>Control of Respiration</i>	125
<i>The Stem</i>	74	<i>Pasteur Effect</i>	125
<i>Roots</i>	78	<i>Feedback and Allosteric Control</i>	126
<i>Leaf Structure</i>	81	<i>Cofactor Control</i>	127
<i>Flowers and Fruit</i>	82	<i>Side Reactions</i>	128
<i>Meristems: Patterns of Growth</i>	85	Other Respiratory Systems and Oxidases	128
<i>Additional Reading</i>	86	<i>Phenol Oxidases</i>	128
SECTION II		<i>Ascorbic Acid Oxidase</i>	129
Plant Metabolism		<i>Catalase and Peroxidases</i>	129
CHAPTER 5. Energy Metabolism	89	<i>Glycolic Acid Oxidase</i>	130
<i>Oxidation and Reduction Reactions</i>	89	<i>Participation of Other Oxidases in Respiration</i>	130
<i>Hydrolysis Reactions</i>	90	<i>“Alternative” Respiration</i>	131
<i>Production of ATP</i>	91	Factors Affecting Respiration of Tissues	131
<i>An Electron Transport Chain</i>	92	<i>Respiratory Quotient and Substrates of Respiration</i>	131
<i>Measuring Energy Changes</i>	95	<i>Age and Tissue Type</i>	132
<i>High Energy Compounds</i>	98	<i>Temperature</i>	135
<i>Mechanism of ATP Synthesis</i>	99	<i>Oxygen</i>	136
<i>Group Transfer Reactions</i>	102	<i>Carbon Dioxide</i>	138
<i>The “Energy Charge” Concept and Metabolic Control</i>	103	<i>Salts</i>	138
<i>Enzyme Action</i>	105	<i>Wounding and Mechanical Stimulus</i>	138
<i>Additional Reading</i>	107	The Study and Measurement of Respiration	139
CHAPTER 6. Respiration	108	<i>Measurement of Rates</i>	139
<i>Introduction</i>	108	<i>Understanding Pathways</i>	141
<i>Glycolysis</i>	108	<i>Enzymology</i>	143
<i>Reactions</i>	108	<i>Additional Reading</i>	145
<i>Energy Balance</i>	110		
<i>Krebs Cycle</i>	111	CHAPTER 7. Photosynthesis	146
<i>Formation of Acetyl-Coenzyme A</i>	111	<i>Introduction</i>	146
<i>Reactions of the Cycle</i>	111	<i>Historical Background</i>	148
<i>Energy Balance</i>	115	<i>Electron Transport Reactions</i>	151
<i>Pentose Shunt</i>	115	<i>Light</i>	151
<i>Reactions</i>	115	<i>Pigments</i>	152

<i>Release of Oxygen</i>	161	<i>Carbon Transformations</i>	205
<i>Structural Relationships</i>	161	<i>Some Metabolic Patterns</i>	208
<i>ATP Synthesis</i>	162	Amides	208
<i>Energy Balance</i>	165	<i>Synthesis</i>	210
Carbon Reactions: The Calvin		<i>Metabolism</i>	212
Cycle	165	<i>Behavior of Glutamine and</i>	
<i>Introduction</i>	165	<i>Asparagine</i>	213
<i>Radioactivity and</i>		Proteins	215
<i>Chromatography</i>	166	<i>Types of Proteins</i>	216
<i>The Calvin Cycle</i>	169	<i>Protein Formation and</i>	
<i>Control Points</i>	173	<i>Breakdown</i>	217
<i>Energy Balance</i>	173	<i>Protein Turnover</i>	217
Other Photosynthetic Pathways	173	Peptides	218
<i>RuBP Oxygenase</i>	173	Purines and Pyrimidines	219
<i>Glycolate Pathway</i>	174	Alkaloids	225
<i>Photorespiration</i>	175	Additional Reading	227
<i>C₄ Photosynthesis</i>	176		
<i>Summary of C₄ Photosynthesis: Its</i>		CHAPTER 9. Polymers and Large	
<i>Significance to Plants That Possess</i>		Molecules	228
<i>It</i>	183	Polysaccharides	228
<i>Crassulacean Acid Metabolism</i>	184	<i>Starch</i>	228
<i>Photosynthesis of Other</i>		<i>Inulin</i>	229
<i>Compounds</i>	185	<i>Cellulose</i>	229
<i>Sucrose and Starch Formation</i>	185	<i>Other Polysaccharides</i>	229
Factors Affecting Photosynthesis	187	Lipids	230
<i>Temperature</i>	187	<i>Chlorophyll</i>	233
<i>Oxygen</i>	187	<i>Isoprenoids</i>	236
<i>Carbon Dioxide</i>	188	Phenols and Aromatic Compounds	238
<i>Light</i>	188	<i>Aromatic Amino Acids, Indoleacetic</i>	
The Evolution of Photosynthesis	190	<i>Acid</i>	238
Additional Reading	191	<i>Simple Phenols and Lignin</i>	238
		<i>Flavones and Anthocyanins</i>	243
CHAPTER 8. Nitrogen Metabolism	192	Additional Reading	244
Nitrogen Fixation	192		
<i>Symbiotic Nitrogen Fixation</i>	192	SECTION III	
<i>Nonsymbiotic Nitrogen Fixation</i>	193		
<i>Mechanism of Nitrogen Fixation</i>	196	Soil, Water, and Air:	
Nitrate Reduction	199	The Nutrition of Plants	
<i>Mechanism of Nitrate Reduction</i>	199		
<i>Nitrate Reduction and</i>		CHAPTER 10. Soil and Mineral	
<i>Metabolism</i>	200	Nutrition	247
Absorption of Nitrogen by Plants	201	The Soil	247
<i>Inorganic Nitrogen</i>	201	<i>Soil Texture and Structure</i>	247
<i>Organic Nitrogen</i>	202	<i>Soil Water</i>	248
Amino Acids	203	<i>Nutrients</i>	250
<i>Formation of Organic Nitrogen</i>	203	Mineral Nutrition	253
<i>Transamination</i>	205	<i>Chemical Composition of Plants</i>	253

<i>Macro- and Micronutrients</i>	256	<i>The Forces Required</i>	279
<i>Essential Nutrients</i>	256	<i>Cohesion of Water</i>	281
<i>Culture Media</i>	256	<i>Vessel Size</i>	283
Macronutrients	257	<i>Alternative Theories</i>	283
<i>Calcium</i>	259	Flow of Water	283
<i>Magnesium</i>	259	Summary	284
<i>Potassium</i>	260	Additional Reading	286
<i>Nitrogen</i>	261		
<i>Phosphorus</i>	261		
<i>Sulfur</i>	262		
Micronutrients	263		
<i>Iron</i>	263	CHAPTER 12. Uptake and Transfer of Solutes	287
<i>Manganese</i>	264	Mechanisms for the Movement of Solutes	287
<i>Boron</i>	265	Diffusion	287
<i>Copper</i>	265	<i>Membrane and Solute Characteristics</i>	287
<i>Zinc</i>	266	<i>Diffusion and Permeability</i>	288
<i>Molybdenum</i>	266	<i>Accumulation by Diffusion</i>	289
<i>Chlorine</i>	266	Movement of Ions	289
A Key to Nutrient Deficiency		<i>Special Problems</i>	289
<i>Symptoms</i>	267	<i>Antagonism</i>	290
Beneficial and Toxic Elements	268	<i>Electrochemical Potential</i>	290
<i>Beneficial Elements</i>	268	<i>Donnan Equilibrium</i>	291
<i>Replacement</i>	269	<i>Membrane Potential</i>	291
<i>Toxic Elements</i>	269	Active Transport	293
Trace Elements in Economic Plants	269	<i>Definition</i>	293
<i>Deficiency Diseases and Toxic Effects in Animals</i>	269	<i>Experimental Support for Active Transport</i>	294
<i>Plants as Indicators</i>	270	<i>Demonstration and Proof of Active Transport</i>	295
Additional Reading	271	<i>Charge Balance</i>	298
CHAPTER 11. Uptake and Movement of Water	272	Mechanisms of Active Transport	298
Water Movement	272	<i>Source of Energy</i>	298
<i>The Problem of Water Loss</i>	272	<i>Possible Mechanisms</i>	298
<i>Entry of Water into Cells</i>	273	<i>Importance of Active Transport</i>	301
<i>Apparent Free Space</i>	273	Additional Reading	302
Entry of Water into Roots	274		
<i>Root Pressure</i>	274	CHAPTER 13. Translocation	303
<i>Apoplast and Symplast</i>	274	The Problems of Translocation	303
<i>Mechanism of Absorption</i>	275	Tissues of Translocation	304
<i>Water Uptake in Transpiring Plants</i>	276	<i>Ringing Experiments</i>	304
Pathway of Water Through Tissues	278	<i>Analysis of Tissues</i>	304
The Ascent of Sap	279	<i>Tracer Experiments</i>	305
		<i>Summary</i>	309
		Translocation in the Xylem	310
		<i>Structure of Xylem</i>	310

<i>Xylem Transport</i>	311	<i>Regulation</i>	348
Translocation in the Phloem	311	<i>Location of Activities</i>	349
<i>Structure of Phloem</i>	311	The C ₂ Cycle—Photorespiration	349
<i>Mechanisms of Phloem Transport</i>	313	<i>Measurement of CO₂ Exchange</i>	349
<i>Bulk Flow</i>	313	<i>Characteristics of</i>	
<i>Activated Diffusion and Pumping</i>	315	<i>Photorespiration</i>	351
<i>Cytoplasmic Streaming</i>	316	<i>Reactions of the C₂ Cycle</i>	352
<i>Interface Diffusion</i>	316	<i>Location of Activities</i>	353
<i>Electroosmosis</i>	317	<i>Integration of C₂ and C₃ Cycles—</i>	
<i>Summary</i>	318	<i>Oxygen and Photorespiration</i>	353
Control of Translocation	319	<i>Nitrogen Metabolism in the C₂</i>	
Circulation	319	<i>Cycle</i>	353
Additional Reading	322	<i>Control of Photorespiration</i>	355
CHAPTER 14. Leaves and the Atmosphere			
Leaves	323	<i>Possible Roles of</i>	
Gas Exchange	327	<i>Photorespiration</i>	356
<i>Diffusion Through Pores</i>	327	The C ₄ Photosynthetic Cycle	356
<i>Gas Exchange Through Stomata</i>	328	<i>Outline of Reactions</i>	356
<i>Stomatal Movement</i>	330	<i>Location of Activities—Kranz</i>	
<i>Factors Affecting Stomatal Action</i>	331	<i>Anatomy</i>	358
<i>Measurement of Stomata</i>	334	<i>Nitrogen Metabolism in the C₄ Cycle</i>	
<i>Mechanism of Stomatal Action</i>	334	<i>360</i>	
<i>Control of Stomata</i>	338	<i>Integration and Regulation of the C₄ Cycle</i>	
Water Loss	339	<i>360</i>	
<i>Guttation</i>	339	Productivity and Ecological Significance	
<i>Transpiration</i>	339	<i>of C₄ Plants</i>	362
Transpiration	340	<i>Advantages of the C₄ Cycle</i>	362
<i>Factors That Affect Transpiration</i>	340	<i>Gathering CO₂ and Conserving Water</i>	362
<i>Control of Transpiration</i>	342	<i>Concentration of CO₂</i>	363
<i>Necessity for Transpiration</i>	342	<i>Photorespiration in C₄ Plants</i>	363
<i>Measurement of Transpiration</i>	343	<i>Temperature Effects</i>	363
Heat Exchange	343	<i>Ecological Adaptation</i>	365
Plants and the Weather	344	<i>Productivity</i>	365
Additional Reading	345	Crassulacean Acid Metabolism	366
CHAPTER 15. Carbon Nutrition—A Synthesis			
Introduction	346	<i>Outline of Reactions</i>	366
The C ₃ Photosynthetic Cycle	347	<i>CAM Patterns</i>	367
<i>Outline of Reactions</i>	347	<i>Control</i>	368
<i>Autocatalysis</i>	348	<i>Respiration and Photorespiration in CAM</i>	369
	346	<i>Ecological Significance of CAM</i>	369
		Dark Respiration	370
		<i>Role of Dark Respiration</i>	370
		<i>Integration of Respiration and</i>	
		<i>Photosynthesis</i>	371
		<i>Light Control of Respiration</i>	372
		Summary	374
		Additional Reading	375

SECTION IV

**The Developing Plant—
Plant Behavior**

CHAPTER 16. Interpretation of Growth and Development	379	<i>Embryo Growth</i> 413 <i>Embryo Growth in Vitro</i> 414 <i>Embryogenesis in Cell and Tissue Culture</i> 414 <i>Totipotency of Plant Cells</i> 418 <i>One-way Streets in Development</i> 418
Introduction	379	Fruit and Seed Formation 419 <i>Fruit Set</i> 419 <i>Fruit and Seed Development</i> 419 <i>Fruit Ripening</i> 421
Growth and Its Measurement	379	Germination 422 <i>Conditions for Germination</i> 423 <i>Mobilization of Reserves</i> 424 <i>Seedling Nutrition</i> 425
<i>Parameters of Growth</i>	379	Additional Reading 426
<i>Growth Versus Development</i>	380	CHAPTER 18. Patterns of Growth 427
<i>Kinetics of Growth</i>	381	Seedling Growth 427 <i>Photomorphogenesis</i> 427
<i>Measurement of Development</i>	385	Initiation of Organs in Tissue Cultures 429
Kinds of Developmental Control	385	Root Growth 431 <i>Terminal Meristem</i> 431
<i>Genetic Controls</i>	385	<i>Control of Root Growth</i> 434 <i>Differentiation of Tissues</i> 434
<i>Organismal Controls</i>	388	<i>Lateral Roots</i> 435
<i>Auxins</i>	388	Shoot Growth 436 <i>Terminal Meristem</i> 436
<i>Gibberellins</i>	391	<i>Stem Growth</i> 437 <i>Leaf Primordia</i> 439
<i>Cytokinins</i>	391	<i>Differentiation</i> 441
<i>Ethylene</i>	394	Growth of Leaves 444
<i>Abscisic Acid</i>	394	Floral Development 446
<i>Hypothetical Growth Substances</i>	394	Additional Reading 449
<i>Environmental Controls</i>	396	CHAPTER 19. Organization in Space 450
Level of Action of Controls	396	Direction of Growth 450
<i>The Genetic Level</i>	396	Tropic Responses 450 <i>Geotropism</i> 450
<i>Biochemical Level</i>	398	<i>Perception of Gravity</i> 451 <i>Mechanism of Response to Gravity</i> 453
<i>Cellular Level</i>	398	<i>Phototropism</i> 455 <i>Phototropic Light Perception</i> 458
<i>Organizational Level</i>	401	<i>Thigmotropism</i> 459 <i>Other Tropisms</i> 460
<i>Distribution, Formation, Breakdown, and Compartmentation of Regulators</i>	404	
<i>Initiation of Events</i>	404	
<i>Rhythmic Behavior</i>	406	
Additional Reading	406	
General References for Section IV	406	
CHAPTER 17. Sexual Reproduction in Higher Plants	408	
The Gametophyte Generation	408	
<i>Carpel and Egg</i>	408	
<i>Anther and Pollen</i>	408	
<i>Sex Determination</i>	410	
Pollination and Fertilization	410	
<i>Pollen Tube Growth</i>	410	
<i>Fertilization</i>	411	
Embryo Development	412	
<i>Capacity to Grow</i>	412	

Shape 460	<i>Perception and Translocation of Floral Stimulus</i> 491
<i>Correlative Effects</i> 460	<i>Inhibitors</i> 495
<i>Other Factors</i> 461	<i>Growth Substances</i> 495
<i>Apical Dominance</i> 462	<i>Anthesin</i> 498
Nastic Responses 463	<i>Changes at the Shoot Apex</i> 499
<i>Epinasty</i> 465	<i>Phytochrome as an Hourglass Timer</i> 500
<i>Thermonasty</i> 465	Rhythmic Processes 500
<i>Nyctinasty</i> 465	<i>Circadian Rhythms</i> 500
<i>Seismonasty</i> 466	<i>Circadian Rhythms and Photoperiodism</i> 503
<i>Traps</i> 468	<i>The Nature of the Oscillating Timer</i> 503
<i>Rapid Leaf Movements</i> 469	Vernalization 504
<i>Nutation</i> 470	<i>Cold Induction</i> 504
Additional Reading 471	<i>Interactions with Other Factors</i> 505
CHAPTER 20. Organization in Time 472	<i>Site of Perception of Cold Stimulus</i> 505
Introduction 472	<i>Vernalin and Gibberellins</i> 506
<i>The Importance of Timing</i> 472	<i>The Nature of the Vernalization Process</i> 507
<i>Ways to Measure Time</i> 473	Summary: Flowering and Floral Induction 509
How Biological Clocks Might Work 473	Additional Reading 510
<i>Hourglass</i> 473	
<i>Oscillator</i> 473	
<i>Interactions</i> 474	
<i>Extrinsic Rhythms</i> 475	
Timing of Flowering 476	CHAPTER 21. Patterns of Nutrition in Development 511
<i>Photoperiodism and Vernalization</i> 476	Photosynthesis and Nutrition 511
<i>The Discovery of Photoperiodism</i> 476	The Onset of Photosynthesis in Seedlings 512
<i>Night Interruptions and Dark Measurement</i> 478	Patterns of Nutrition in the Mature Plant 513
<i>Sites of Perception</i> 480	<i>Patterns of Assimilation</i> 513
<i>Phytochrome</i> 482	<i>Patterns of Export from Leaves</i> 515
The Mechanism of Phytochrome Action 486	<i>Fruit Formation</i> 518
<i>The Range of Reactions Mediated by Phytochrome</i> 486	<i>Wood Formation</i> 519
<i>Cellular Location of Phytochrome</i> 486	Nutritional Traffic Control 520
<i>Some Attempted Explanations of Phytochrome Action</i> 487	<i>Control of Translocation</i> 520
<i>Active and Inactive Phytochrome</i> 487	<i>Movement of Nutrients Toward Sinks</i> 520
<i>Some Recent Ideas</i> 488	<i>Apical Dominance and Nutrition</i> 522
<i>High Energy Reactions</i> 490	<i>Hormonal Control of Translocation</i> 523
<i>The Relationship Between Flowering and Rapid Responses</i> 490	<i>Hormone Control of Photosynthesis</i> 525
Floral Induction 491	Additional Reading 528
<i>Induction and Floral Development</i> 491	

CHAPTER 22. Dormancy, Senescence, and Death	529	<i>Enzyme Synthesis</i> 568 <i>Mechanism of Action</i> 569
Dormancy 529		<i>Cytokinins</i> 570
Causes of Dormancy 530		<i>Distribution</i> 570
<i>Environmental Factors</i> 530		<i>Effects</i> 571
<i>Abscisic Acid</i> 530		<i>Prevention of Senescence</i> 572
<i>Interaction of ABA with Other Growth Substances</i> 533		<i>Enzyme Formation</i> 573
Seed Dormancy 536		<i>Cytokinins as Constituents of RNA</i> 574
<i>Types of Seed Dormancy</i> 536		<i>Cytokinin Action</i> 575
<i>Light Requirement</i> 536		<i>Abscisic Acid</i> 576
<i>Temperature</i> 537		<i>Abscisic Acid Effects</i> 576
<i>Seed Coat Effects</i> 539		<i>Abscisic Acid Action</i> 576
<i>Other Factors</i> 541		<i>Ethylene</i> 576
Dormancy of Vegetative Organs 541		<i>Ethylene Effects</i> 576
<i>Day Length and Dormancy</i> 541		<i>Mechanism of Action</i> 577
<i>Other Factors</i> 542		<i>Other Substances That Influence Growth</i> 577
<i>Interacting Factors</i> 542		<i>Interaction of Hormones</i> 579
<i>Breaking Dormancy</i> 544		<i>Summary of Hormone Actions</i> 579
Senescence and Death 546		<i>Additional Reading</i> 582
<i>Patterns of Aging and Death</i> 546		
<i>Metabolic Aspects of Senescence</i> 547		
<i>Nutritional Competition in Senescence</i> 547		
<i>Effects of Growth Factors</i> 549		
<i>Abscission</i> 552		
Additional Reading 556		
CHAPTER 23. Action of Hormones and Growth Substances	557	
Introduction 557		SECTION V
Auxins 557		Physiology of Special Organisms
<i>Synthesis, Movement, and Inactivation</i> 557		
<i>IAA and Ethylene Formation</i> 560		CHAPTER 24. Tree Physiology 585
<i>IAA Effects on Specific Enzymes</i> 560		<i>Special Characteristics of Trees</i> 585
<i>Auxins and Translocation</i> 561		<i>Assimilation</i> 585
<i>Cell Wall Effects</i> 561		<i>Wood Formation</i> 587
<i>Effects on RNA and Protein Synthesis</i> 563		<i>Hormones</i> 588
<i>Structure and Activity</i> 564		<i>Photoperiod</i> 588
<i>Receptors and Binding Sites</i> 565		<i>Water</i> 588
Giberellins 567		<i>Temperature</i> 588
<i>Synthesis and Distribution</i> 567		<i>Assimilation</i> 588
<i>Elongation</i> 568		<i>Reaction Wood and Orientation Movement</i> 588
<i>Flowering</i> 568		<i>Form</i> 591

Communities of Trees	593	<i>Respiration</i>	614
Additional Reading	594	<i>Photosynthesis</i>	615
CHAPTER 25. Physiology of Marine Algae	595	<i>Nitrogen Metabolism</i>	615
Introduction	595	<i>Translocation</i>	615
Productivity of Marine Algae	595	<i>Growth Substances and Morphological Response</i>	616
<i>Natural Food Chains</i>	595	<i>Responses to Environment</i>	619
<i>Economic Use of Algae</i>	595	<i>Injury</i>	621
Physiological Adaptations of Marine Algae	597	<i>Host-Parasite Interaction</i>	621
<i>Photosynthesis</i>	597	Additional Reading	622
<i>Seasonal Growth</i>	597	CHAPTER 27. Symbiosis	623
<i>Uptake of Nutrients</i>	600	Types of Symbiosis	623
Reactions to Environmental Factors	601	Associations	624
<i>Light</i>	601	Mycorrhiza	624
<i>Temperature</i>	602	Orchids	626
<i>Desiccation</i>	603	Lichens	627
<i>pH</i>	603	<i>Lichen Associations</i>	627
<i>Salinity and Osmotic Potential</i>	603	<i>Metabolic Interactions</i>	628
<i>Wave Action</i>	604	<i>Water Relations</i>	631
Peculiarities of Algal Metabolism and Biochemistry	604	<i>Pigments</i>	631
<i>Chemotaxonomy</i>	604	Algae-Invertebrate Symbiosis	631
<i>Pigments</i>	604	Nitrogen-Fixing Symbiosis	632
<i>Small Molecules</i>	606	Additional Reading	633
<i>Storage Compounds</i>	606	SECTION VI	
<i>Calcareous Algae</i>	607	Physiology of Plant Distribution and Communities	
<i>Antifouling</i>	607	CHAPTER 28. Physiology of Plants Under Stress	637
<i>Pheromones</i>	607	Introduction	637
Additional Reading	608	Effects of Stress	637
CHAPTER 26. Parasites and Disease	609	Types of Stress	638
Introduction	609	Stress Resistance: Avoidance and Tolerance	639
Infection	610	Measurement of Hardiness	639
<i>Organisms of Disease</i>	610	Drought	640
<i>Resistance</i>	610	<i>Drought Avoidance and Tolerance</i>	640
<i>Immunity</i>	611	<i>Consequences of Dehydration</i>	640
<i>Stimulus to Infection</i>	612	<i>Mechanisms of Drought Tolerance</i>	641
<i>Invasion</i>	613	Heat	642
<i>Toxins</i>	613		
<i>Growth Substances</i>	613		
Physiological Responses to Parasitism	614		

<i>Limits of Heat Tolerance</i>	642	<i>Competition</i>	663
<i>Mechanisms of Heat Tolerance</i>	642	<i>Succession</i>	665
Low Temperature and Freezing	643	Physiological Mechanisms of Competition	665
<i>Chilling and Freezing</i>	643	Additional Reading	667
<i>Theories of Freezing Resistance</i>	644		
<i>Frost Hardening</i>	645		
Radiation	645		
Soil Conditions	646	CHAPTER 30. Plants and Man	668
Altitude	646	Introduction	668
Pollution	647	Man's Impact on the Landscape	668
Additional Reading	650	<i>Levels of Interaction</i>	669
CHAPTER 29. Physiological Factors in Plant Distribution	651	<i>Modification of the Environment</i>	669
Introduction	651	<i>Modification in Agriculture</i>	671
Physiological Factors in Ecology	651	<i>Environmental Management</i>	672
Factors Affecting Vegetation	653	Productivity and Agriculture	672
<i>Vegetation Types</i>	653	<i>Use of Growth Factors</i>	672
<i>Historical Factors</i>	653	<i>Timing</i>	677
<i>Geographic Factors</i>	654	<i>Environmental Control</i>	678
<i>Rainfall</i>	654	<i>"The Sun's Work in a Cornfield"</i>	681
<i>Relative Humidity</i>	655	Adaptation and Development of Plants for Special Needs	683
<i>Temperature</i>	655	Plants and Pollution	686
<i>Wind</i>	658	The Role of the Plant Physiologist	686
<i>Periodicity and Season Length</i>	658	Additional Reading	687
Factors Affecting Flora	659		
<i>Climatic</i>	659	Author Index	689
<i>Physiographic</i>	661	Index of Plant Names	697
<i>Pollution</i>	662	General Index	705

Ma. Teresa.