contents

CHAPTER 1		
CHARACTERISTICS OF	LIVING	THINGS

- 1-1 Introduction 2
- 1-2 Specific organization 3
- 1-3 Metabolism and excretion 4
- 1-4 Movement and responsiveness 4
- 1-5 Growth 6
- 1-6 Reproduction 6
- 1-7 Differentiation 6
- 1-8 Adaptation 8
- 1-9 Summary 8

CHAPTER 2 MAJOR GENERALIZATIONS IN BOTANY

- 2-1 Introduction 11
- 2-2 The cell concept 11
- 2-3 The gene concept 12
- 2-4 The mutation theory 14
- 2-5 Evolution and natural selection 14
- 2-6 Ecological interrelations 15
- 2-7 The molecular foundation of biology 16
- 2-8 Mechanism and vitalism 16
- 2-9 Summary 17

CHAPTER 3 THE NATURE AND LOGIC OF SCIENCE

- 3-1 Introduction 20
- 3-2 Scientific procedures 20
- 3-3 Inductive logic 25
- 3-4 The application of logic: a case study 29
- 3-5 The limitations of science 33
- 3-6 Summary 35

CHAPTER 4 PRINCIPLES OF EXPERIMENTAL DESIGN

- 4-1 Introduction 38
- 4-2 Eijkman's experiments 38
- 4-3 The value of numerical data 40
- 4-4 The experiment 41
- 4-5 Five patterns of experimental design 43
- 4-6 Descriptive versus experimental science 49
- 4-7 Chance and trial-and-error in scientific discovery 50
- 4-8 Summary 51

	PTER 5	6-7	Classification systems as scientific models	83
	ANALYSIS INTERPRETATION OF DATA	6-8	What is a plant? 83	
5-1	Introduction 55	6–9	A brief classification of plants 84	
5-2	Frames of reference for biological data 55	6–10	Interrelationships of plants and other organisms 92	
5–3	Normal curves and the analysis of distributions 57	6–11	Summary 93	
5-4	From table to graph 58			
5-5	Correlations 62			
5-6	Interpolation and extrapolation 63		PTER 7 23	
5-7	Generalizing points on a graph 64	CELL	S	
5-8	The sigmoid curve 65	7-1	Introduction 96	
5-9	Scalar transformation 66	7-2	Tools and techniques 96	
5-10	Summary 68	7-3	The general plan of cells '99	
8		7-4	The cytoplasm 99	
CHAI	PTER 6	7-5	The nucleus 103	
	SIFICATION: THE BASIS OF	7–6	Two kinds of cells 105	
	CTIVE GENERALIZATION IN BIOLOGY	7-7	Cell walls 106	
6–1	Introduction 73	7–8	How do we "know"? 108	
6–2	Some principles of classification 73	7–9	The function of the nucleus 108	
6–3	Development of botanical classification 74	7–10	Cell sizes 112	
6–4	The naming of plant species 77	7–11	The cell membrane: a study of function	112
6–5	The problem of species definition 79			113
6–6	Classification and scientific procedure in	7–12	Osmosis and osmotic pressure 116	
	biology 82	7-13	Summary 118	

CHAPTER 8	
CELLULAR ME	TABOLISM

8-1	Introduction	123

- 8-2 Matter and energy 123
- 8-3 Kinds of molecules in living systems 126
- 8-4 Biochemical pathways 131
- 8-5 Biochemical control mechanisms 132
- 8-6 ATP and energy currency in the cell 133
- 8-7 Respiration: the production of ATP 135
- 8-8 The biochemical pathways of glucose degradation 136
- 8-9 The Krebs cycle 137
- 8-10 Harnessing energy: the electron transport system 138
- 8–11 The energy yield of the anaerobic and aerobic respiratory pathways 141
- 8-12 How biochemical systems are studied 142
- 8–13 The Krebs cycle as a central metabolic hub 143
- 8-14 Summary 145

CHAPTER 9 1/5 NUTRITION OF GREEN PLANTS

- 9-1 Introduction 150
- 9-2 Some background notes 150

- 9-3 The problem 151
- 9-4 Van Helmont's conclusion questioned 152
- 9-5 Another fact is added 153
- 9-6 Chemists enter the scene 154
- 9-7 Ingenhousz sees the light 156
- 9-8 A new problem to solve 158
- 9-9 An old problem is solved 161
- 9-10 The problem solved 163
- 9-11 Photosynthesis: the modern view 165
- 9-12 The dark reactions 169
- 9-13 The light reactions 171
- 9-14 The efficiency of photosynthesis 174
- 9-15 Summary 175

CHAPTER 10 10 ORGANIZATION OF THE VASCULAR PLANT BODY

- 10-1 Introduction 180
- 10-2 Tools and techniques 180
- 10-3 General organization of a vascular plant 182
- 10-4 Plant tissues 184
- 10-5 The root system 194
- 10-6 The shoot system 196
- 10-7 Increase in thickness of the plant body 201
- 10-8 Summary 205

	TER 11 ISPORTING EMS IN VASCULAR PLANTS		Self-duplication of mitochondria and chloroplasts 243
11-1	Introduction 208	12–7	Summary 244
11–2	Translocation: the movement of material through plants 210		TER 13 TICS I: FROM MATH TO MENDEL
11–3	Movement of water and minerals into the plant 210		Introduction 247
11-4	Mechanism of stomatal movement 213	13-2	Genetics: a mathematical basis 247
11-5	The movement of gases in plants 216	13-3	Binomial expansions 249
11-6	Translocation: movement through the	13-4	Mendelian genetics 252
	xylem 219	13-5	One pair of genes 254
11-7	Movement through the phloem 224	13-6	Two pairs of genes 259
11-8	Movement of liquid out of the plant 228	13-7	Summary 261
11-9	Movement of metabolic wastes: excretion 228		
11–10	Summary 229	GENE	TER 14 TICS II: MENDEL TO MOLECULE
CHAP	TER 12	14-1	Introduction 265
CELL	REPRODUCTION	14-2	Linkage 265
12-1	Introduction 232	14-3	Broken links 267
12-2	Cell division: some problems of study 232	14-4	Mapping 267
12-3	Mitosis and cytokinesis 232	14-5	
12-4	Mitosis: some problems 236	14-6	Genetics: the fruit fly era 269

14–7 Epistasis 271

12-5 The reduction division: meiosis 238

14–9	In search of the gene 274		GROWTH AND DEVELOPMENT II: FROM FLOWER TO LEAF FALL		
14–11 14–12 14–13 14–14	Viral and other evidence 276 Gene structure 277 Testing the model 281 DNA and chromosome structure 284 Gene function 285	16–2	Introduction 320 Flowering and the control of plant form 320 From flowers to seeds 325 Experimental studies of cell and embryo growth and development 330		
14–15 14–16 14–17	Protein synthesis and the genetic code 287 The gene 292 Summary 293	16–5 16–6	Dormancy and seed germination 331 Control of tissue differentiation in roots and shoots 335		
GROV	TER 15 20 VTH AND DEVELOPMENT I: R ANALYSIS AND CONTROL Introduction 297		Tropisms 336 Apical dominance and the control of plant form 339 Senescence in plant development 342		
15-2 15-3	Concepts of growth 297 Kinetics of growth 297	16–10 16–11	Abscission 346 Summary 348		
15–4 15–5	Control of growth and development 299 Gene regulation: the Jacob-Monod hypothesis 302	ECOL	TER 17 OGICAL RELATIONSHIPS: ETITION FOR ENERGY		
15-6	Evidence for gene regulation in growth and development 304	17–1 17–2	Introduction 353 Ecological niches, habitats, and the		
15-7	Regulation of growth by hormones 307		ecosystem 354		
15-8	Mechanism of growth regulator action 314	17-3	The food chain 356		
15-9	Summary 317	17-4	The cyclic use of materials 358		

17–5	Interactions between organisms in the ecosystem 362		TER 19 ORIGIN OF LIFE
17-6	Changes in ecosystems through time:	19–1	Introduction 399
	succession 366	19-2	The idea of spontaneous generation 399
17-7	Summary 369	19-3	The origin of life by chemosynthesis 401
		19–4	Viruses and the origin of life 405
CHAP	TER 18	19–5	The geological time scale and the origin of life 407
	PROCESS OF EVOLUTION	19–6	Summary 409
18-1	Introduction 373		
18-2	Natural selection 373	CHAP	TER 20
18-3	Direction of natural selection 376	THE EVOLUTION	
18-4	The population concept of natural	OF PL	ANTS I: FROM ONE CELL TO MANY
	selection 378	20-1	Introduction 414
18-5	The causes of genetic variability within	20-2	The role of evolution 414
	species 379	20-3	Evolution of the procaryotes 415
18-6	The nature of species 380	20-4	Origin of eucaryotic organisms 417
18-7	The origin of species 383	20-5	Diversification of eucaryotes: the
18-8	Adaptive radiation: evolutionary opportunity		Klein-Cronquist hypothesis 422
	and exploitation 386	20–6	Evolution among the green algae: the
18-9	Adaptation and survival 390		Blackman-West hypothesis 433
18–10	The phylogenetic approach to evolution 391	20–7	Origin of eucaryotes: the Margulis hypothesis 436
18–11	Phylogeny and classification 394	20-8	Origin and adaptive significance of
18–12	Summary 395		multicellularity 438

20–10	systems 439 Summary 444	THE EVOLUTION OF PLANTS III: FLOWERING PLANTS, CONQUERORS OF THE LAND	
OF PL. 21–1 21–2	TER 21 EVOLUTION ANTS II: MIGRATION TO THE LAND Introduction 447 Immediate ancestors of land plants: a hypothesis 447 Problems faced by the early land plants 448	22-2 22-3	Introduction 482 What is a flowering plant? 482 Early fossils of the flowering plants 484 Ancestors of the flowering plants 485 Nature of the earliest flowering plants: a model 486
21–4	Migration to the land: a hypothesis 448	22–6	Protection of ovules and seeds: the carpel 487
21–5 21–6	The early land plants 449 Evolution of leaves 453	22–7 22–8	Evolution of other flower parts 489 Fruits and seed dispersal 492
21–7 21–8	Evolution of the stem 456 Evolution of reproductive systems in the	22-9	The original home of the flowering plants: a hypothesis 496
21–9	early land plants 461 Evolution of the seed 463	22–10	Adaptive radiation of the flowering plants 497
	Protection of sporangia 467	22-11	Perfection of the conducting system 499
21–11	Protection of seeds 468	22-12	Origin of the deciduous habit 500
21–12	Secondary invasions of the land: bryophytes 472	22-13	Origin of herbaceous flowering plants 501
21–13	Secondary invasions of the land: the fungi 473	22–14	Flower diversity and its adaptive significance 502
21-14	Secondary invasions of the land: lichens 477	22-15	Ovule protection and flower diversity 504
21–15	Summary 479	22–16	Summary 507

CHAPTER 22

THE EVOLUTION OF PLANTS III:

20-9 Origin and diversification of sexual

APPENDIX 1 CONVERSION OF TEMPERATURE SCALES 510

APPENDIX 2 CALCULATION OF VARIANCE IN A SAMPLE OF DATA 512

APPENDIX 3
TABLE OF AMINO ACIDS 514

APPENDIX 4 SAMPLE KEY TO TREES, USING FRUIT 518

APPENDIX 5 A CLASSIFICATION OF PLANTS 521

GLOSSARY 526
GENERAL INDEX 543
INDEX OF PLANT AND ANIMAL NAMES 553